Theory of Heavy Quarkonium Production

Mathias Butenschön (Hamburg University)

Based on work with Bernd Kniehl: PRL **104**, 072001 (2010); PRL **106**, 022003 (2011); PRD **84**, 051501R (2011); PRL **107**, 232001 (2011); PRL **108**, 172002 (2012).

Production and Decay Rates of Heavy Quarkonia

Heavy Quarkonia: Bound states of heavy quark and antiquark.

The classic approach: Color-singlet model

- Calculate cross section for heavy quark pair in physical color singlet (=color neutral) state. In case of J/ψ: cc̄[³S₁^[1]]
- Multiply by quarkonium wave function at origin
- Leftover IR singularities in case of P wave quarkonia
- Mid 90's: Strong disagreement with Tevatron data apparent

Nonrelativistic QCD (NRQCD):

- Rigorous effective field theory: Bodwin, Braaten, Lepage (1995)
- Based on factorization of soft and hard scales (Scale hierarchy: Mv^2 , $Mv << \Lambda_{QCD} << M$)
- Could explain hadroproduction at Tevatron

Further models on the market: k_T factorization, Color Evaporation Model

J/ψ Production with NRQCD

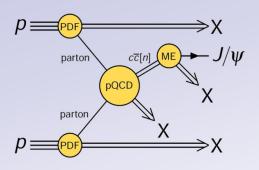
Factorization theorem:
$$\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$$

- n: Every possible Fock state, including color-octet (CO) states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD
- $\langle O^{J/\psi}[n] \rangle$: Long distance matrix elements (LDMEs): describe $c\bar{c}[n] \rightarrow J/\psi$, universal, extracted from experiment.

Scaling rules: LDMEs scale with definite power of v ($v^2 \approx 0.2$):

scaling	V^3	v ⁷ ("CO states")	<i>V</i> ¹¹
n	³ S ₁ ^[1]	¹ S ₀ ^[8] , ³ S ₁ ^[8] , ³ P _J ^[8]	

- **Double expansion** in v and α_s
- Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals **color-singlet model**.


NLO Corrections to Color Octet Contributions

- Petrelli, Cacciari, Greco, Maltoni, Mangano (1998):
 Photo- and hadroproduction (only 2 → 1 processes)
- Klasen, Kniehl, Mihaila, Steinhauser (2005):
 yy scattering at LEP (neglecting resolved photons)
- M.B., Kniehl (2009):
 Photoproduction at HERA (neglecting resolved photons)
- Zhang, Ma, Wang, Chao (2009): e⁺e⁻ scattering at B factories
- Ma, Wang, Chao (2010); M.B., Kniehl (2010): Hadroproduction
- M.B., Kniehl (2011):
 Global fit of CO LDMEs (all above processes + resolved photons)
- M.B., Kniehl (2011): Polarization in Photoproduction
- M.B., Kniehl (2012); Chao, Ma, Shao, K. Wang, Y.-J. Zhang (2012);
 Gong, Wan, J.-X. Wang, H.-F. Zhang (2012):
 Polarization in Hadroproduction
 - Test LDME universality!

In the following

Calculate Inclusive J/ψ Production within NRQCD

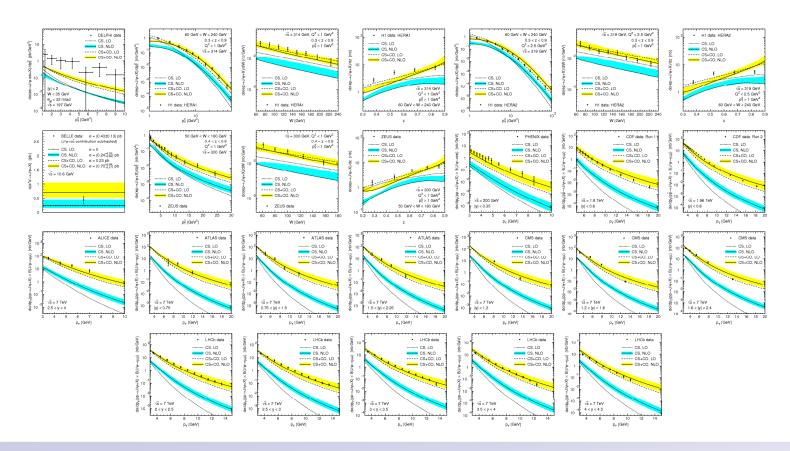
Factorization formulas (here hadroproduction):

Convolute partonic cross section with proton

PDFs:
$$\sigma_{\text{hadr}} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) \, f_{j/p}(y) \cdot \sigma_{\text{part,i,j}}$$

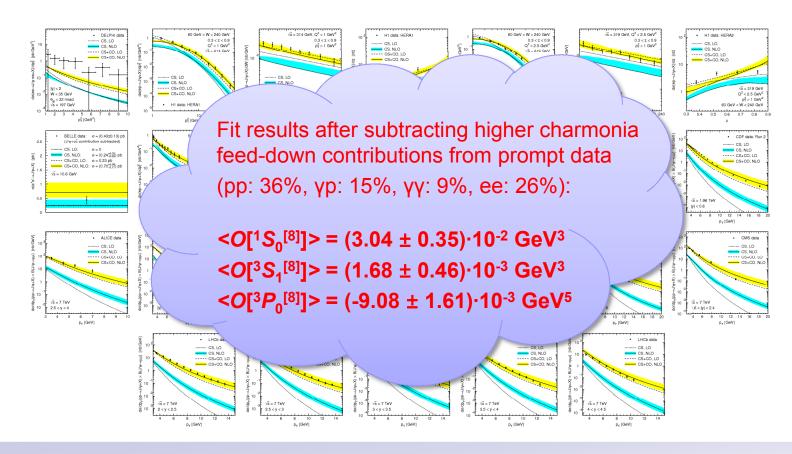
NRQCD factorization:

$$\sigma_{ ext{part,i,j}} = \sum_{n} \sigma(ij
ightarrow c\overline{c}[n] + X) \cdot \langle O^{J/\psi}[n]
angle$$

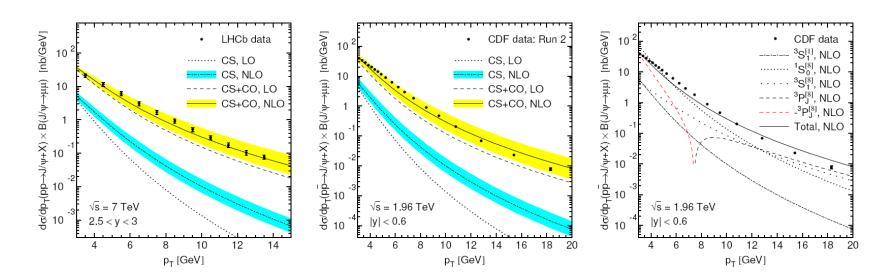

Amplitudes for $c\overline{c}[n]$ production by projector application, e.g.:

$$A_{c\overline{c}[^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha}(m_{S})\operatorname{Tr}\left[C\Pi^{\alpha}A_{c\overline{c}}\right]|_{q=0}$$

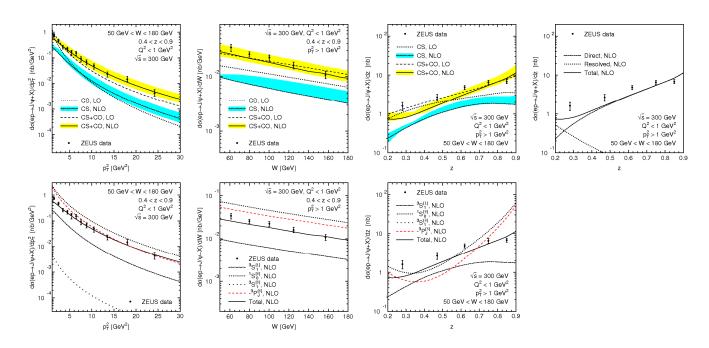
$$A_{c\overline{c}[^{3}P_{I}^{[8]}]} = \varepsilon_{\alpha}(m_{S})\varepsilon_{\beta}(m_{I})\frac{d}{dq_{\beta}}\operatorname{Tr}\left[C\Pi^{\alpha}A_{c\overline{c}}\right]|_{q=0}$$


- $A_{c\bar{c}}$: Amputated pQCD amplitude for open $c\bar{c}$ production.
- **q**: Relative momentum between c and \overline{c} . ϵ : Polarization vectors.

Global Fit to Unpolarized Data


$$\langle O[^{1}S_{0}^{[8]}] \rangle = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$$
 $\langle O[^{3}S_{1}^{[8]}] \rangle = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $\langle O[^{3}P_{0}^{[8]}] \rangle = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

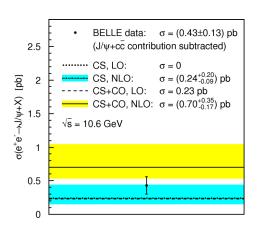
Global Fit to Unpolarized Data

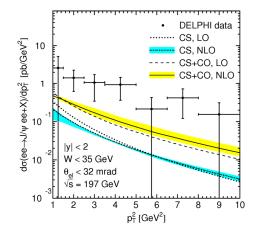

$$\langle O[^{1}S_{0}^{[8]}] \rangle = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$$
 $\langle O[^{3}S_{1}^{[8]}] \rangle = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $\langle O[^{3}P_{0}^{[8]}] \rangle = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

In Detail: Hadroproduction (LHC, Tevatron)

- Color singlet model far below data. CS+CO describes data well.
- ${}^{3}P_{J}^{[8]}$ short distance cross section **negative** at p_{T} > 7 GeV.
- But: Short distance cross sections and LDMEs unphysical No problem!
- Hadroproduction data below p_T = 3 GeV excluded from our fit.
- Observation: Change s or rapidity y just rescaling of cross sections:
 CO LDMEs describing RHIC or Tevatron must also describe LHC!

In Detail: Photoproduction at HERA



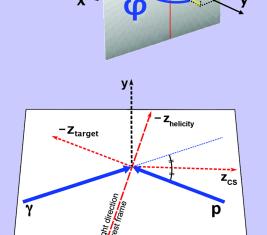

- **Distributions:** Transverse momentum (p_T) , photon-proton c.m. energy (W), and z = Fraction of photon energy going to J/ψ .
- Again: Color singlet alone below the data, CS+CO describes data well.
- Calculation includes resolved photon contributions: Important at low z.
- Good description at high z: No increase like in older Born analyses!

Electron-Positron Collisions at BELLE:

- CS: Large overlap with data, CS+CO: Small overlap.
- But: Only 4+ charged track events measured.
 - Actual BELLE data larger by unknown factor.
- For e⁺e⁻color singlet, NNLO terms been calculated, increasing cross section. Not part of the global fit. [Ma, Zhang, Chao (2009); Gong, Wang (2009)]

Two Photon scattering at DELPHI (LEP):

- Includes direct, single and double resolved photons.
 - CS below data, but also **CS+CO** curve **too low**. Possible explanations:
 - Uncertainties in the measurement (Just 16 events involved!)
 - □ Hint at problems with LDME universality.

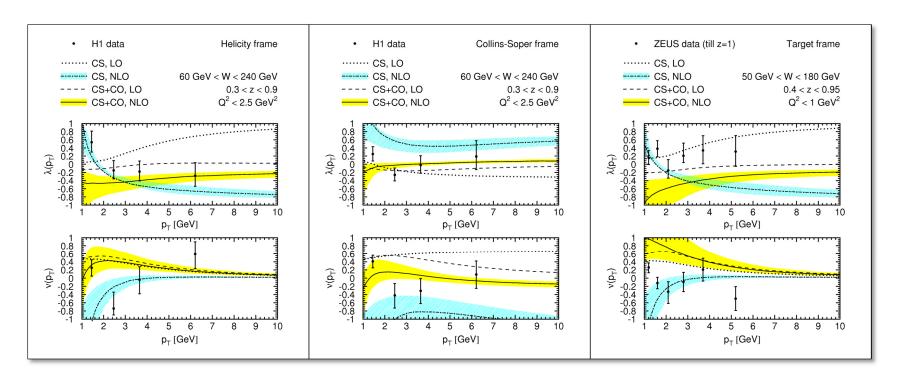

J/ψ Polarization

- **Angular distribution** of decay lepton I^+ in J/ψ rest frame
 - Polarization observables λ , μ , ν :

$$\frac{d\Gamma(J/\psi \to I^+I^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta)\cos\phi + \frac{v}{2}\sin^2\theta\cos(2\phi)$$

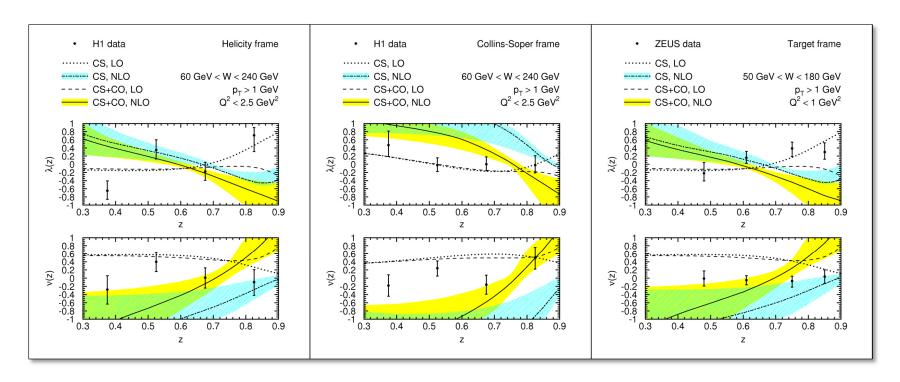
- Depends on choice of coordinate system:
 - □ Helicity frame: $z \text{ axis } \| -(\vec{p}_{\gamma} + \vec{p}_{p}) \|$
 - \square Collins-Soper frame: z axis $||\vec{p}_{\gamma}/|\vec{p}_{\gamma}| \vec{p}_{p}/|\vec{p}_{p}|$
 - □ **Target frame**: z axis $\| -\vec{p}_p \|$
- In Calculation: Plug in explicit expressions for $c\bar{c}[n]$ spin polarization vectors according to

$$\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2} \text{Re} \, d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad v = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$$

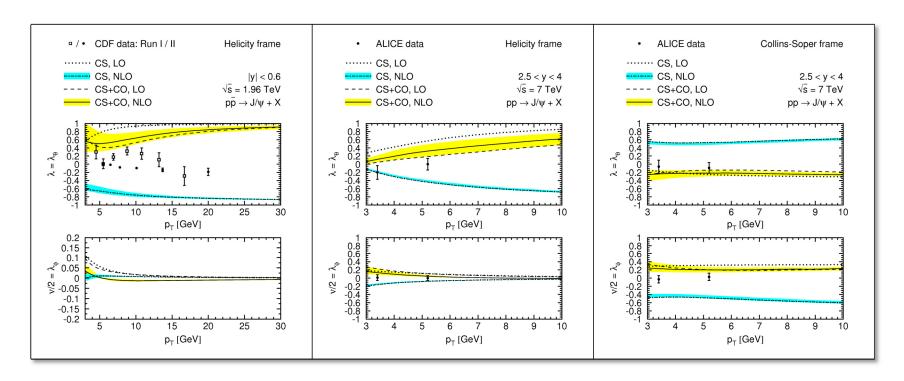

J/ψ rest frame

production plane

We use the CO LDME set with feed-down contributions subtracted.


J/Ψ rest frame

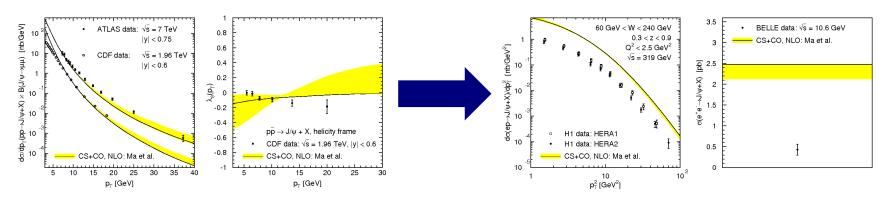
J/ψ Polarization in Photoproduction: p_T Distribution


- Bands: Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T .
- **CS+CO:** largely **unpolarized** J/ψ at high p_T . α_s expansion converges better.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.

J/ψ Polarization in Photoproduction: z Distribution

- Bands: Uncertainties due to scale variation and CO LDMEs.
- Scale uncertainties very large.
- Error bands of CSM and NRQCD largely overlap.
- p_T distribution better suited to discriminate production mechanisms than z.

J/ψ Polarization in Hadroproduction

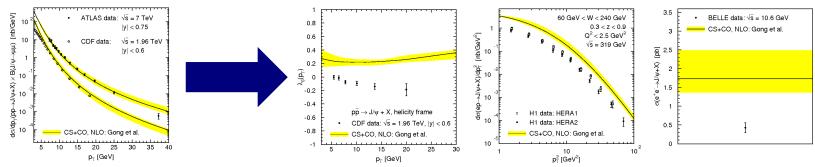

- Helicity frame: NRQCD predicts strong transverse polarization at high p_T.
- **Collins-Soper frame**: NRQCD predicts slightly longitudinal J/ψ .
- Disagreement with CDF Run II data, rough agreement with early ALICE data.
 - Following high precision LHC data: Confirm/rule out LDME universality!

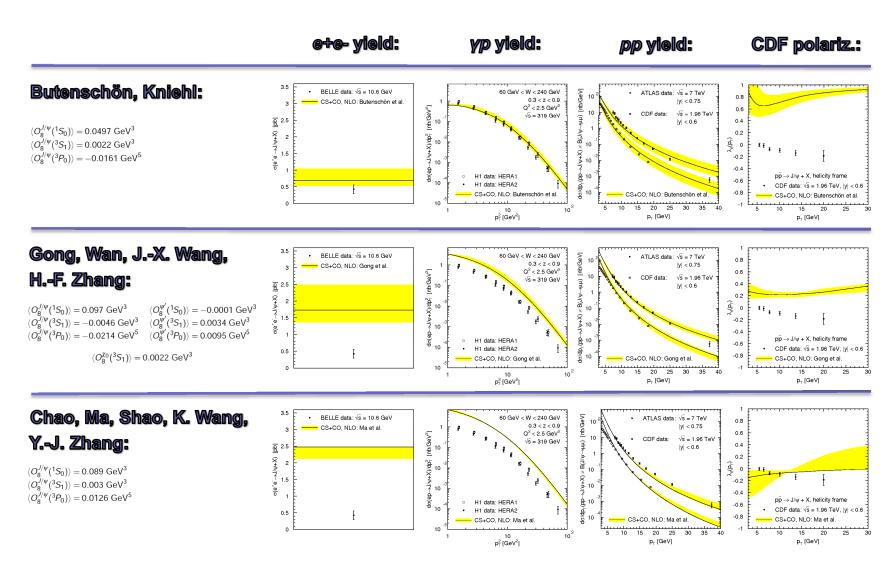
- Chao, Ma, Shao, Wang, Zhang (2012)
- Fit to CDF Tevatron J/ψ yield and polarization data with $p_T > 7$ GeV:

$$\langle O_8^{J/\psi}(^1S_0)\rangle = 0.089 \text{ GeV}^3 \quad \langle O_8^{J/\psi}(^3S_1)\rangle = 0.003 \text{ GeV}^3 \quad \langle O_8^{J/\psi}(^3P_0)\rangle = 0.0126 \text{ GeV}^5$$

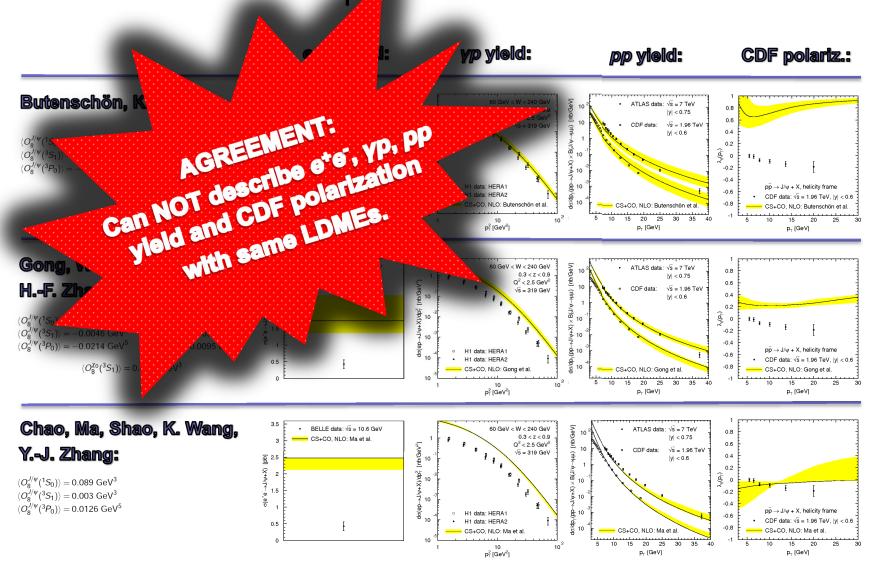
- **Describes** CDF Run II polarization data **and** J/ψ hadroproduction yield up to **highest measured** p_T values, not below 7 GeV.
- But: Disagreement with photoproduction at HERA and e⁺e⁻ at BELLE:

Bands: Two alternative LDME sets specified in Ma et al.:


1.
$$\langle O_8^{J/\psi}(^1S_0)\rangle = 0$$
 $\langle O_8^{J/\psi}(^3S_1)\rangle = 0.014 \text{ GeV}^3$ $\langle O_8^{J/\psi}(^3P_0)\rangle = 0.054 \text{ GeV}^5$
2. $\langle O_8^{J/\psi}(^1S_0)\rangle = 0.11 \text{ GeV}^3$ $\langle O_8^{J/\psi}(^3S_1)\rangle = 0$ $\langle O_8^{J/\psi}(^3P_0)\rangle = 0$


- Gong, Wan, Wang, Zhang (2012)
- Fit only hadroproduction yield, but consider also ψ' and χ_{ci} contributions:
 - \Box Fit χ_{co} CO LDME to LHCb data
 - \Box Fit ψ' CO LDMEs to CDF and LHCb data (p_{τ} >7 GeV)
 - □ Subtract ψ' and χ_{cj} feddowns, fit J/ψ LDMEs to CDF and LHCb data (p_T >7 GeV):

$$\begin{split} \langle O_8^{J/\psi}(^1S_0) \rangle &= 0.097 \text{ GeV}^3 & \langle O_8^{J/\psi}(^3S_1) \rangle = -0.0046 \text{ GeV}^3 & \langle O_8^{J/\psi}(^3P_0) \rangle = -0.0214 \text{ GeV}^5 \\ \langle O_8^{\psi'}(^1S_0) \rangle &= -0.0001 \text{ GeV}^3 & \langle O_8^{\psi'}(^3S_1) \rangle = 0.0034 \text{ GeV}^3 & \langle O_8^{\psi'}(^3P_0) \rangle = 0.0095 \text{ GeV}^5 \\ \langle O_8^{\chi_0}(^3S_1) \rangle &= 0.0022 \text{ GeV}^3 \end{split}$$


- **Predict** J/ψ , ψ' and χ_{ci} **polarization** in prompt hadroproduction (first time!)
- Predicts moderate transverse J/ψ polarization, contrary to CDF Run II data
- Also: In disagreement with photoproduction at HERA and e⁺e⁻ at BELLE:

Overview: Three J/ψ Production Works

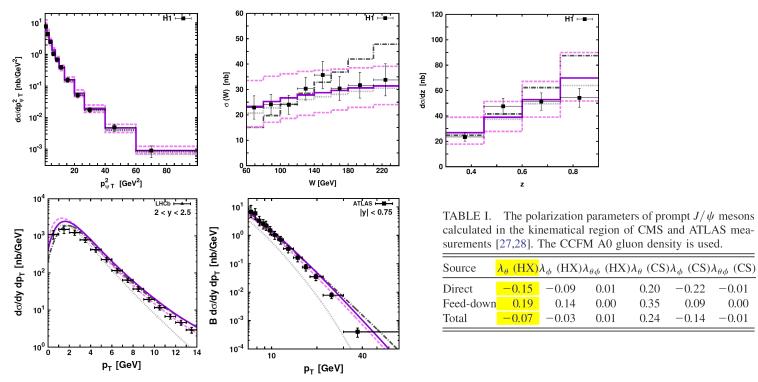
Overview: Three J/w Production Works

k_⊤ Factorization Approach

Apply k_{τ} factorization to quarkonium production:

Idea: Scales of quarkonium production much smaller than collision energy:

$$p_T, m_c \ll \sqrt{s}$$

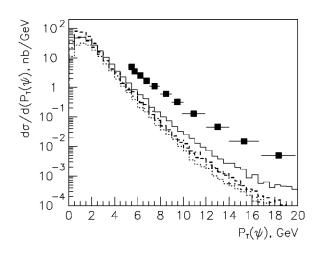

- Longitudinal parton momentum fractions x small, transverse parton momenta k_T should not be neglected.
- Use off shell matrix elements with k_T dependence entering via

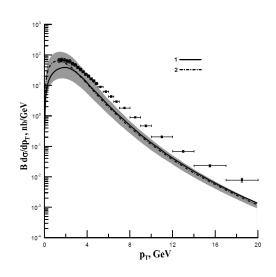
$$arepsilon^{\mu}(k_T) = k_T^{\mu}/|\vec{k_T}|$$

- Usually just LO matrix elements used.
- Fold with k_T dependent, unintegrated PDFs.
- Various prescriptions for deriving uPDFs from usual PDFs in DGLAP, BFKL or "CCFM" approach.
- Monte Carlo program **CASCADE** simulates initial state gluon radiation within k_T factorization framework [Jung, Salam (2001)].

k_⊤ Factorization Approach: Results (1)

Baranov, Lipatov, Zotov (2011); Baranov, Lipatov, Zotov (2012):
Color Singlet Model predictions for various uPDFs:


No room and no need for color octet contributions.


k_⊤ Factorization Approach: Results (2)

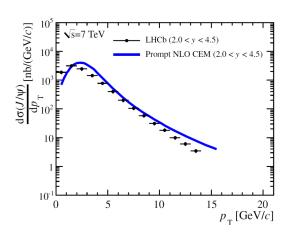
But: Other calculations come to different conclusions:

(for hadroproduction)

[Baranov (2002)]

[Saleev, Nefedov, Shipilova (2012)]

- \longrightarrow Effect of k_T much smaller, color singlet still not enough!
- In these (and other) works, also fits of CO LDMEs within k_T factorization framework been performed.

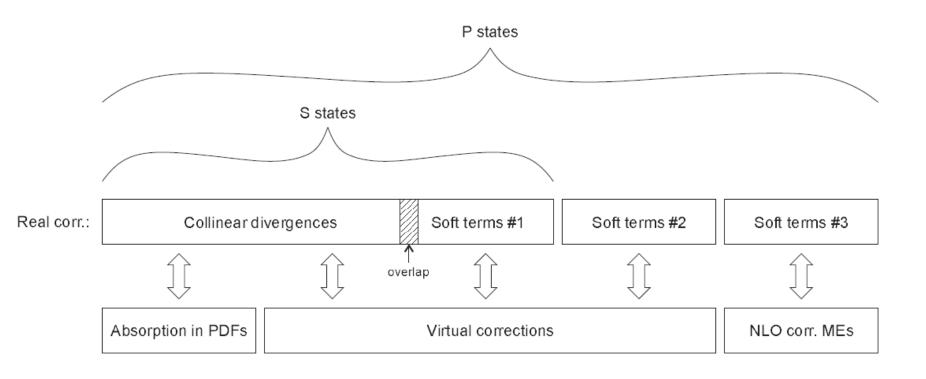

Color Evaporation Model

Fritsch (1977); Halzen (1977); Glück, Owens, Reya (1978):

$$\sigma = F_H \int_{(2m_c)^2}^{(2m_D)^2} dm^2 \frac{d\sigma_{c\overline{c}}}{dm_{c\overline{c}}^2}$$

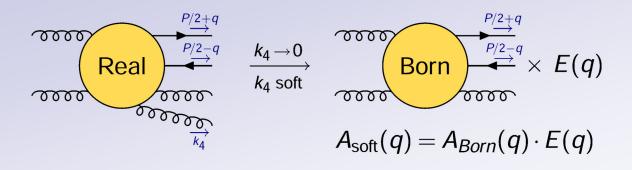
- Consider open $c+\bar{c}$ production, regardless of $c+\bar{c}$ color, spin, momenta.
- Integrate over invariant $c+\bar{c}$ mass up to formation of next heavier meson pair.
- **F**_H: Number describing formation of quarkonium H by color "evaporation".
- Qualitative picture rather than rigorous theory.

 A recent NLO prediction: [Frawley, Ullrich, Vogt (2008)]



Summary

- NRQCD provides rigorous factorization theorem for heavy quarkonium production. But: Need to proof LDME universality.
- Combined NLO fit of NRQCD LDMEs to inclusive J/ψ production data from ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- Good agreement for **CS+CO** with data except perhaps for $\gamma \gamma \rightarrow J/\psi + X$.
- CSM predictions fall short of data everywhere except for $e^+e^- \rightarrow J/\psi + X$.
- Fit constrained. CO LDMEs in accordance with velocity scaling rules.
- NLO calculations of **polarized** J/ψ cross section including CO states: Direct photoproduction at HERA and hadroproduction at Tevatron and LHC.
- CDF Tevatron Run II data in disagreement with our NRQCD prediction, early low-p_T ALICE data however still in agreement.
- Two later analyses also show that e⁺e⁻, γp, pp yield and CDF Run II polarization data can not be described with same LDME set.
 - Following LHC measurements: Hopefully clarify LDME universality!


BACKUP SLIDES

Overview of IR Singularity Structure

Structure of Soft Singularities

Soft limits of the real corrections:

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

$$A_{\text{soft,s}} = A_{\text{soft}}(0) = A_{\text{Born,s}} \cdot E(0)$$

$$A_{\text{soft,p}} = A'_{\text{soft}}(0) = A_{\text{Born,p}} \cdot E(0) + A_{\text{Born,s}} \cdot E'(0)$$

$$|A_{\text{soft,s}}|^2 = |A_{\text{Born,s}}|^2 \cdot E(0)^2$$

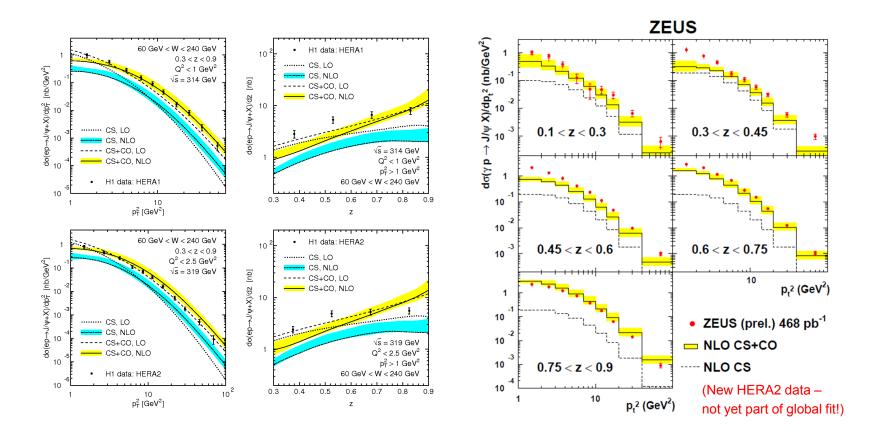
$$|A_{\text{soft,p}}|^2 = |A_{\text{Born,p}}|^2 \cdot E(0)^2 + 2 \operatorname{Re} A^*_{\text{Born,s}} A_{\text{Born,p}} \cdot E(0) E'(0) + |A_{\text{Born,s}}|^2 \cdot E'(0)^2$$

Radiative Corrections to LDMEs

In NRQCD: Long distance MEs = $c\overline{c}$ scattering amplitudes:

$$\langle O^{J/\psi}[n] \rangle = \frac{c}{\overline{c}}$$

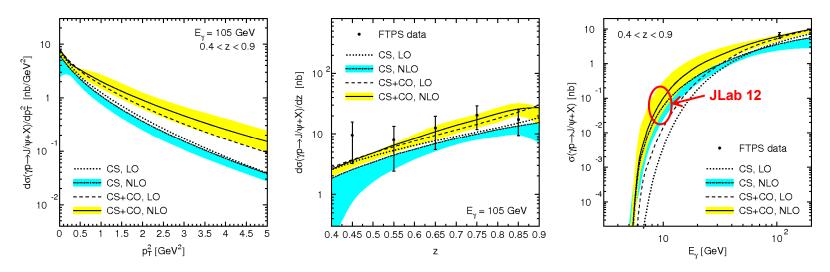
$$O[n] = 4$$
-fermion operators
 $(n = {}^{3}S_{1}^{[1]}, {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0/1/2}^{[8]}, ...)$


Corrections to $\langle O^{J/\psi}[^3S_1^{[1/8]}] \rangle$ with NRQCD Feynman rules:

$$\frac{c}{\overline{c}} + \frac{\text{similar}}{\text{diagrams}} \propto \frac{4\alpha_{\text{S}}}{3\pi m_{c}^{2}} \left(\frac{1}{\varepsilon_{\text{UV}}} - \frac{1}{\varepsilon_{\text{IR}}}\right) \cdot \frac{c}{\overline{c}}$$

- UV singularity cancelled by renormalization of 4-fermion operator.
- IR singularity cancels soft #3 terms of P states.

M. Butenschön


In Detail: More Photoproduction

- Again: CS alone below data; CS+CO good description, especially at high z.
- H1 HERA2 data systematically below H1 HERA1 and ZEUS HERA1 + 2.

Low-energy inelastic J/ψ photoproduction

- FTPS experiment at Fermilab ('80s): 105 GeV photons on hydrogen target.
- Measured **inelastic** J/ψ production ($z = E_{J/\psi}/E_{\gamma} < 0.9$) NRQCD yields good description even at this low-energy range:

- Planned JLab near-threshold measurements: 12 GeV electrons on nuclei.
- Total inelastic cross section: ~ 10⁻² nb. Measureable? (does of course increase with other nuclei than hydrogen)
- Close to threshold: Bad perturbative stability of parton model.

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_{τ} cut:

	<i>p_T</i> > 1 GeV	ρ _τ > 2 GeV	<i>p_T</i> > 3 GeV	p _T > 5 GeV	<i>p_T</i> > 7 GeV
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
$< O[^3S_1^{[8]}] > [10^{-3} \text{ GeV}^3]$	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
M ₀ [10 ⁻² GeV ³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
M ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

Fit underconstrained. Therefore give two linear combinations of Ma et al.:

$$M_0 = \langle O(^{1}S_0^{[8]}) \rangle + 3.9 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O(^{3}S_1^{[8]}) \rangle - 0.56 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2$$

Fit results depend strongly on low-p_T cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	$M_0 = (7.4 \pm 1.9) 10^{-2} \text{GeV}^3$	$M_1 = (0.5 \pm 0.2) 10^{-3} \text{GeV}^3$		
Ignore feed-downs, directly fit M_0 and M_1 :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.26 \pm 0.23) \ 10^{-3} \ \text{GeV}^3$		
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	$M_0 = (8.54 \pm 1.02) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.67 \pm 1.05) \ 10^{-3} \ \text{GeV}^3$		
[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 114001				

Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low- p_{τ} cut:

	<i>p</i> _T > 1 GeV	<i>p_T</i> > 2 GeV	<i>p</i> _T > 3 GeV	<i>p_T</i> > 5 GeV	ρ _T > 7 GeV
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
<o[3s<sub>1[8]]> [10-3 GeV3]</o[3s<sub>	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
M ₀ [10 ⁻² GeV ³]	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
M ₁ [10 ⁻³ GeV ³]	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

■ Fit underconstrained. Therefore give two linear combinations of Ma et al.:

$$M_0 = \langle O(^{1}S_0^{[8]}) \rangle + 3.9 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2 \qquad M_1 = \langle O(^{3}S_1^{[8]}) \rangle - 0.56 \langle O(^{3}P_0^{[8]}) \rangle / m_c^2$$

• Fit results **depend strongly** on low- p_{τ} cut.

Agreement with Ma et al.'s fit to Tevatron run II data with $p_T > 7$ GeV:

Default: Include feed-downs, directly fit M_0 and M_1 :	$M_0 = (7.4 \pm 1.9) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (0.5 \pm 0.2) 10^{-3} \text{GeV}^3$
Ignore feed-downs, directly fit M_0 and M_1 :	$M_0 = (8.92 \pm 0.39) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.26 \pm 0.23) \ 10^{-3} \ \text{GeV}^3$
Ignore feed-downs, M_0 and M_1 from 3-parameter fit:	$M_0 = (8.54 \pm 1.02) \ 10^{-2} \ \text{GeV}^3$	$M_1 = (1.67 \pm 1.05) 10^{-3} \text{GeV}^3$

[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 114001

Global Fit: Dependence on Low- p_T Cuts (1)

Global fit: Vary low- p_T cut on hadroproduction data:

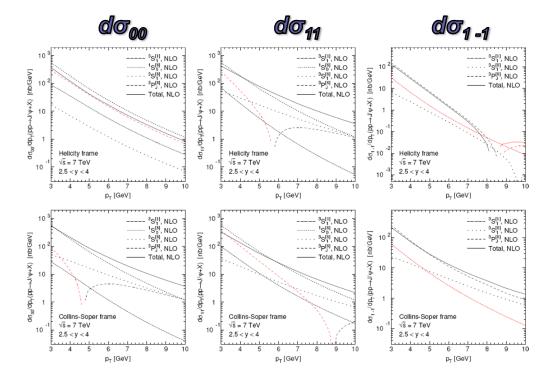
hadroproduction data left	<i>p_T></i> 1 GeV 148 points	<i>p_T</i> > 2 GeV 134 points	<i>p_T</i> > 3 GeV 119 points	<i>p_T</i> > 5 GeV 86 points	<i>p_T</i> > 7 GeV 60 points
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	5.68 ± 0.37	4.25 ± 0.43	4.97 ± 0.44	4.92 ± 0.49	3.91 ± 0.51
<o[<sup>3S₁^[8]]> [10⁻³ GeV³]</o[<sup>	0.90 ± 0.50	2.94 ± 0.58	2.24 ± 0.59	2.23 ± 0.62	2.96 ± 0.64
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-2.23 ± 0.17	-1.38 ± 0.20	-1.61 ± 0.20	-1.59 ± 0.22	-1.16 ± 0.23
M ₀ [10 ⁻² GeV ³]	1.81 ± 0.09	1.85 ± 0.09	2.18 ± 0.10	2.17 ± 0.12	1.89 ± 0.12
M ₁ [10 ⁻³ GeV ³]	6.46 ± 0.17	6.37 ± 0.17	6.25 ± 0.17	6.18 ± 0.17	5.86 ± 0.18

- Stabilizing influence of photoproduction data.
- Fit constrained enough: Can now extract 3 CO LDMEs.
- Fit results now almost independent of low-p_T cut.
- Fit less stable with low- p_{τ} cut below 2 GeV (nonperturbative effects).

Global Fit: Dependence on Low- p_T Cuts (2)

Global fit: Vary low- p_{τ} cut on photoproduction (including $\gamma\gamma$ -scattering):

photoproduction data left	p _T > 1 GeV 74 points	p_T > 2 GeV 30 points	p _T > 3 GeV 15 points	p _T > 5 GeV 5 points	<i>p_T</i> > 7 GeV 1 point
$< O[^1S_0^{[8]}] > [10^{-2} \text{ GeV}^3]$	4.97 ± 0.44	5.10 ± 0.92	4.05 ± 1.17	5.44 ± 1.27	9.56 ± 1.59
<0[³ S ₁ ^[8]]> [10 ⁻³ GeV ³]	2.24 ± 0.59	2.11 ± 1.22	3.52 ± 1.56	1.73 ± 1.68	-3.66 ± 2.09
$< O[^{3}P_{0}^{[8]}] > [10^{-2} \text{ GeV}^{5}]$	-1.61 ± 0.20	-1.58 ± 0.48	-0.97 ± 0.63	-1.63 ± 0.68	-3.73 ± 0.83
M ₀ [10 ⁻² GeV ³]	2.18 ± 0.10	2.36 ± 0.12	2.37 ± 0.13	2.62 ± 0.15	3.10 ± 0.19
M ₁ [10 ⁻³ GeV ³]	6.25 ± 0.17	6.05 ± 0.18	5.94 ± 0.19	5.78 ± 0.20	5.62 ± 0.20


- **Fit stable** against varying low- p_{τ} cut in region 1 GeV ~ 3 GeV.
- Just 5 or 1 photoproduction against 119 hadroproduction points not enough to stabilize the fit. Not stable with low- p_T cut much larger than 3 GeV. (Would need more high- p_T photoproduction data.)

Polarization in Hadroproduction: Contributions

First: Sum up contributions of intermediate states:

Helicity frame:

Collins-Soper frame:

■ Then:
$$\lambda_{\theta} = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \lambda_{\theta\phi} = \frac{\sqrt{2} \text{Re} \, d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad \lambda_{\phi} = \frac{d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$$