### Electroweak Physics at the LHC

Matthias Schott (CERN)On behalf of the ATLAS and CMS Collaborations

The Electroweak Sector

- DiBoson Production at the LHC
- Anomalous Triple Gauge Couplings
- Precision Measurements at Hadron Colliders
- The Global Electroweak Fit

### The Electroweak Sector of the SM

#### Glashow, Weinberg and Salam

- Unification of electromagnetic U(1) and weak force SU(2)
- Triple gauge couplings
- Five Observables:
  - $m_W, m_Z, \alpha_{em}, G_F, sin^2 \theta_W$

• 
$$sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$
  
•  $m_W^2 = \frac{m_Z^2}{2} \cdot (1 + \sqrt{\frac{\sqrt{8}\pi \alpha_{em}}{G_F m_Z^2}})$ 

Higgs mechanism to allow for heavy gauge boson (W,Z) masses



### **Radiative Corrections**

- Loop corrections have to be considered
  - Modifications to vertices and propagators by electroweak form-factors
- Predictions of observables depend on further parameters (e.g. mt, mH)
  - Loop corrections ~1%
  - Precision observables measured to much better
- Electroweak Fits
  - Test consistency of SM
  - Need precision measurements



#### Content

The Electroweak Sector DiBoson Production at the LHC Anomalous Triple Gauge Couplings Precision Measurements at Hadron Colliders The Global Electroweak Fit

Testing QCD and Electroweak Predictions ATLAS References: arxiv:1205.2531, ATLAS-CONF-2012-025, PLB 709 (2012), ATLAS-CONF-2012-027, ATLAS-CONF-2012-026 CMS References: PLB 701 (2011), CMS-PAS-SMP-12-005, CMS-PAS-EWK-11-010

### Summary of Results

- ATLAS and CMS have measured the production cross-section of Wγ, Zγ, WW, WZ and ZZ at √s= 7/8 TeV
  - All measured results compatible with SMexpectations
  - Note: TGC (i.e. s-channel) contributes only ≈10% on inclusive cross-sections

Note: Focus in this talk on Vs=7 TeV results



# Wy/Zy Production: Selection

#### Signal Selection: ATLAS (CMS)

Standard W-Boson Selection

 one lepton, pT>25(20)GeV, ETMiss>25(25)
 GeV, mT>40(0)GeV

 Standard Z-Boson:

 two leptons, pT>25(20)GeV, mll>40(50)GeV

• γ: ET>15(10)GeV, ΔR(I,γ)>0.7(0.7)

Major backgrounds: W+jets, Z+jets
 one jet faking photon signal
 data-driven estimates



### $W\gamma/Z\gamma$ Production: Results



•  $\sigma \times BR(W \rightarrow |v) =$ 56.3 ± 5.0(stat) ± 5.0(syst) ± 2.3(lumi) pb •  $\sigma \times BR(Z \rightarrow |l) =$ 

9.4 ± 1.0(stat) ± 0.6(syst) ± 0.4(lumi) pb



### **WW Production: Selection**

#### **Signal Selection: ATLAS as example**

• Important for  $H \rightarrow WW$  studies

- Major Backgrounds
  - Тор
  - W+Jets
  - Drell-Yan
  - Other DiBosons



### WW Production: Background and Results

- Drell-Yan Background
   drastically reduced by pT(II) cut
- W+jets Background
   Estimated with fake-factor methods
- Top-Quark Background
  - Reduced by jet-veto requirement
    - significant theo. Unc.!
  - Use b-tagged control region
- SM-Higgs?
  - Section
    accounts only for ≈ 3% of the cross-section

#### Results for $\sigma(pp \rightarrow WW)$

- CMS: 52.4  $\pm$  2.0(stat)  $\pm$  4.5(syst)  $\pm$  1.2(lumi)pb
- ATLAS:  $51.9 \pm 2.0(\textit{stat}) \pm 3.9(\textit{syst}) \pm 0.9(\textit{lumi})\textit{pb}$
- Theory:  $44.7 \pm 2.0 \dot{p}b$



### WZ Production

#### Signal Selection: ATLAS (CMS)

Standard Z-Boson: 2 leptons, ...
 W-Boson "Tag"

3rd lepton (pT>20), ETMiss >20(30) GeV, mT>20(0)GeV

Small background contribution from Top, ZZ and Z+Jets

#### **Results**

CMS: 17.0±2.4(stat)±1.1(syst)±1.0(lumi)pb

- ATLAS: 19.0±1.4(stat)±0.9(syst)±0.4(lumi)pb
- Theory: 17.6 ± 1.1pb
- ATLAS: provide unfolded pT(Z) and mWZ distributions
  - ...other channels will follow





## **ZZ** Production



- Important for  $H \rightarrow ZZ^*$  studies
- Very clean process with little backgrounds

#### Signal Selection: ATLAS / CMS

- 4 leptons: pT > 7GeV
- leading-lepton: pT > 25/20GeV for e,μ
   best-Z cand.: pT >20/10GeV
- two-opposite same flavor pairs with 66(60)GeV<mll<116(120)GeV</p>
- CMS:  $Z \rightarrow \tau \tau$  as 2nd candidate allowed

#### **Results**

CMS: 3.8±1.5(stat)±0.2(syst)±0.2(lumi)pb
 ATLAS: 8.5±2.7(stat)±0.4(syst)±0.3(lumi)pb
 Theory: 6.5 ± 0.3pb

### New Results: $ZZ \rightarrow IIvv$

#### Signal Selection: ATLAS

- 2 same flavor leptons: pT >20GeV
- |mll -mZ|<15GeV</p>
- Axial-ETMiss >80GeV
- No jets with pT > 25GeV
- IETMiss –pZT / pZT >0.6

#### ATLAS

±1.4(sys)pb

Theory:

D

```
\sigmaZZ = 6.5 ± 0.3pb
```

#### **Preliminary Conclusion**

No surprises in the DiBoson Production at the LHC! Just a new background: Higgs...



| Observed                                                                                   | 78                       |
|--------------------------------------------------------------------------------------------|--------------------------|
| Expected ZZ                                                                                | $42.3\pm0.8\pm1.8$       |
| Background estimations:                                                                    |                          |
| $W^{\pm}Z$ (MC)                                                                            | $22.7 \pm 0.8 \pm 3.5$   |
| $W^{\pm} + \gamma (MC)$                                                                    | $0.29 \pm 0.12 \pm 0.01$ |
| $t\bar{t}, W^{\pm}t, W^{+}W^{-} \text{ and } Z \rightarrow \tau\tau \text{ (data-driven)}$ | $14.7 \pm 4.1 \pm 0.6$   |
| Z+jets (data-driven)                                                                       | $1.7\pm0.5\pm0.8$        |
| $W^{\pm}$ +jets (data-driven)                                                              | $1.3 \pm 0.4 \pm 0.3$    |
| Total Background                                                                           | $40.7 \pm 4.3 \pm 3.7$   |

#### M. Schott (CERN)

#### Content

- The Electroweak Sector
- DiBoson Production at the LHC
- Anomalous Triple Gauge Couplings
- Precision Measurements at Hadron Colliders
- The Global Electroweak Fit



**Results and Limits on Anomalous Triple Gauge Couplings** 

- ATLAS References: arxiv:1205.2531, ATLAS-CONF-2012-025, PLB 709 (2012), ATLAS-CONF-2012-027, ATLAS-CONF-2012-026
- CMS References: PLB 701 (2011), CMS-PAS-SMP-12-005, CMS-PAS-EWK-11-010

### Triple Gauge Couplings (ZZZ and ZZγ)

- non-SM processes can affect TGCs in s-channel
- aTGCs modify total production rate as well as event kinematics



Possible vertices using an effective Lagrangian

$$\mathcal{L}_{VZZ} = -\frac{e}{M_Z^2} \left[ f_4^{\nu} (\partial_{\mu} V^{\mu\beta}) Z_{\alpha} (\partial^{\alpha} Z_{\beta}) + f_5^{\nu} (\partial^{\sigma} V_{\alpha\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} \right]$$

- Suppression factor depending on scale Λ ensures unitarity
- For (ZZZ) and (ZZγ) couplings
   in SM (f4Z, f4γ, f5Z, f5γ) = (0, 0, 0, 0)SM
- ATLAS: Limits based on total ZZ cross-section
- CMS: Limit from ZZ invariant mass
   → most power limit to date

### Triple Gauge Couplings (WWZ, WWγ)

 Possible vertices using an effective Lagrangian

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i \left[ g_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu\nu} W^{\dagger\mu} V^{\nu}) + \kappa^V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\rho} \right]$$

- For (WWZ) and (WWγ) couplings
   in SM for WWZ (g1Z,kZ,λ) = (1,1,0)SM
- Limits on g1Z,kZ,λ via pT(Z) distribution
- Limits on λγ, Δκλ via pT(γ) distribution





#### Content

- The Electroweak Sector
- DiBoson Production at the LHC
- Anomalous Triple Gauge Couplings
- Precision Measurements at Hadron Colliders
- The Global Electroweak Fit



Discussion on measurements of mW and sin20W

- mW References: P.R.Lett. 108, 151803/151803 (2012)
- sin20W References: Phys. Rev. D 85 (2012) 032002
- Supporting Measurements: Phys. Rev. D85 (2012) 072004, JHEP 06 (2012) 058, ATLAS-CONF-2011-129, arXiv:1206.2598
- mtop: Tomorrow's Talk(?0 References: arXiv:1209:2319, arXiv:1203.575

### Forward Backward Asymmetry

- AFB=(σF-σB)/(σF+σB) determines sin2θW
- In the SM, sin2θW is the only free parameter that fixes the relative couplings of all fermions to γ/Z
  - test universality of fermion/gauge-boson interactions
- Previous Measurements: LEP, NuTeV, Tevatron
- @LHC: symmetric pp collision
   unkown quark direction
  - Solution ⇒ deduced only on a statistical basis using the boost direction

#### **Basic Idea**

- interference of the axial-vector and vector couplings
- → asymmetry in the distribution of the polar angle of the lepton with respect to the direction of the constituent quark



### Forward Backward Asymmetry

 CMS: multivariate analysis with unbinned maximum likelihood fit based on YII, mll, θ\*

#### Results

• CMS:  $sin_{eff}^2 = 0.2287 \pm 0.0020(stat) \pm 0.0025(sys)$ 

• WA: 
$$sin_{eff}^2 = 0.23153 \pm 0.00016$$



#### Outlook

- Expect improvements on PDF
- Detector modeling

| source                    | correction | uncertainty  |
|---------------------------|------------|--------------|
| PDF                       | -          | ±0.0013      |
| FSR                       | -          | $\pm 0.0011$ |
| LO model (EWK)            | -          | $\pm 0.0002$ |
| LO model (QCD)            | +0.0012    | $\pm 0.0012$ |
| resolution and alignment  | +0.0007    | $\pm 0.0013$ |
| efficiency and acceptance | -          | $\pm 0.0003$ |
| background                | -          | $\pm 0.0001$ |
| total                     | +0.0019    | ±0.0025      |

### Measurement of the W-Boson mass

- Measurement technique at hadron colliders
  - Only leptonic decay channel can be used
  - neutrino leaves detector unseen
- Template Fit method with three observables to assess mW
  - Iepton pT , transverse mass mT, ETmiss
  - Need excellent
     understanding of detector and
     MC simulation



### Results from Tevatron (1/2)

- General Approach
  - based on three observables
  - combination after fitting
  - most sensitive variable: mT
- D0-Experiment
  - only using electron channel
- CDF-Experiment
  - using electron and muon channel





### Results from Tevatron (2/2)

- Best measurement from CDF: ΔmW =19
- World average:  $\Delta mW = 15$
- Dominating Uncertainties
  - PDF's
  - Recoil energy scale and resolution
  - lepton energy scale and resolution
- Outlook at Tevatron
  - Twice statistics available
  - include leptons (η>1)



#### Transverse Momentum

| Systematic (MeV)                  | Electrons | Muons | Common |
|-----------------------------------|-----------|-------|--------|
| Lepton Energy Scale               | 10        | 7     | 5      |
| Lepton Energy Resolution          | 4         | 1     | 0      |
| Recoil Energy Scale               | 6         | 6     | 6      |
| Recoil Energy Resolution          | 5         | 5     | 5      |
| $u_{  }$ efficiency               | 2         | 1     | 0      |
| Lepton Removal                    | 0         | 0     | 0      |
| Backgrounds                       | 3         | 5     | 0      |
| $p_T(W) \mod(g_2, g_3, \alpha_s)$ | 9         | 9     | 9      |
| Parton Distributions              | 9         | 9     | 9      |
| QED radiation                     | 4         | 4     | 4      |
| Total                             | 19        | 18    | 16     |

### mW at the LHC - Challenges

- Target Precision @LHC: 7 MeV
- 2011 dataset: Stat. precision of 4 MeV

#### **Detector Effects**

- High Pile-Up
  - → worse ETmiss resolution
- Energy Scale and Momentum Resolution

#### **Understanding the Proton and QCD**

Determine PDFs @ LHC

 η, mll-differential W/Drell-Yan production cross-sections
 W/Z+c/b quarks
 ...

 Measurement of W/Z Boson transverse momenta

 pQCD
 Resummation, ...

### mW - Supporting Measurements



#### Content

- The Electroweak Sector
- DiBoson Production at the LHC
- Anomalous Triple Gauge Couplings
- Precision Measurements at Hadron Colliders
- The Global Electroweak Fit



Global electroweak fit results assuming a SM Higgs Boson with m=125.7±0.4GeV Gfitter-Group: http://arxiv.org/abs/1209.2716

CKM-Fitter Package: http://arxiv.org/pdf/1209.1101

## **Gfitter-Package**



#### SM-Higgs?

- Use (uncorrelated) weighted average of ATLAS and CMS measurements:
- mH =125.7± 0.4GeV

State of the art implementation of SM predictions of EW precision observables

Based on huge amount of pioneering work by many people
 Radiative corrections are important

Logarithmic dependence on MH through virtual corrections

In particular:

MW : full two-loop + leading beyond-two-loop corrections

[M. Awramik et al., Phys. Rev D69, 053006 (2004) and refs.] (Theoretical uncertainties:  $\Delta MW = 4-6$  GeV)

sin2θleff: full two-loop + leading beyond-two-loop corrections

[M. Awramik et al., JHEP 11, 048 (2006) and refs.] (Theoretical uncertainties:  $\Delta sin2\theta$  /eff=4.7 $\ensuremath{!}210-5)$ 

Partial and total widths of Z and W: based on parameterized formulae

[Hagiwara et al. (http://arxiv.org/abs/arXiv:1104.1769)]

Radiator Functions using 3NLO calc. of massless QCD Adler function

[P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

# Fit-Results (1/2)

| Parameter                                                            | Input value                      | Free<br>in fit | Fit result incl. $M_H$           | Fit result not incl. $M_H$      | Fit result incl. $M_H$ but not exp. input in row |
|----------------------------------------------------------------------|----------------------------------|----------------|----------------------------------|---------------------------------|--------------------------------------------------|
| $M_H  [\text{GeV}]^{(\circ)}$                                        | $125.7\pm0.4$                    | yes            | $125.7\pm0.4$                    | $94{}^{+25}_{-22}$              | $94^{+25}_{-22}$                                 |
| $M_W$ [GeV]                                                          | $80.385\pm0.015$                 | -              | $80.367\pm0.007$                 | $80.380\pm0.012$                | $80.359 \pm 0.011$                               |
| $\Gamma_W$ [GeV]                                                     | $2.085 \pm 0.042$                | -              | $2.091 \pm 0.001$                | $2.092\pm0.001$                 | $2.091\pm0.001$                                  |
| $M_Z$ [GeV]                                                          | $91.1875 \pm 0.0021$             | yes            | $91.1878 \pm 0.0021$             | $91.1874 \pm 0.0021$            | $91.1983 \pm 0.0116$                             |
| $\Gamma_Z$ [GeV]                                                     | $2.4952 \pm 0.0023$              | _              | $2.4954 \pm 0.0014$              | $2.4958 \pm 0.0015$             | $2.4951 \pm 0.0017$                              |
| $\sigma^0_{\rm had}$ [nb]                                            | $41.540 \pm 0.037$               | _              | $41.479\pm0.014$                 | $41.478\pm0.014$                | $41.470 \pm 0.015$                               |
| $R^0_\ell$                                                           | $20.767 \pm 0.025$               | -              | $20.740 \pm 0.017$               | $20.743\pm0.018$                | $20.716 \pm 0.026$                               |
| $A_{ m FB}^{0,\ell}$                                                 | $0.0171 \pm 0.0010$              | _              | $0.01627 \pm 0.0002$             | $0.01637 \pm 0.0002$            | $0.01624 \pm 0.0002$                             |
| $A_{\ell}$ (*)                                                       | $0.1499 \pm 0.0018$              | _              | $0.1473^{+0.0006}_{-0.0008}$     | $0.1477 \pm 0.0009$             | $0.1468 \pm 0.0005^{(\dagger)}$                  |
| $\sin^2 	heta_{	ext{eff}}^\ell(Q_{	ext{FB}})$                        | $0.2324 \pm 0.0012$              | _              | $0.23148^{+0.00011}_{-0.00007}$  | $0.23143^{+0.00010}_{-0.00012}$ | $0.23150 \pm 0.00009$                            |
| $A_c$                                                                | $0.670 \pm 0.027$                | _              | $0.6680^{+0.00025}_{-0.00038}$   | $0.6682^{+0.00042}_{-0.00035}$  | $0.6680 \pm 0.00031$                             |
| $A_b$                                                                | $0.923 \pm 0.020$                | _              | $0.93464_{-0.00007}^{+0.00004}$  | $0.93468 \pm 0.00008$           | $0.93463 \pm 0.00006$                            |
| $A_{\mathrm{FB}}^{0,c}$                                              | $0.0707 \pm 0.0035$              | _              | $0.0739^{+0.0003}_{-0.0005}$     | $0.0740 \pm 0.0005$             | $0.0738 \pm 0.0004$                              |
| $A_{ m FB}^{0,b}$                                                    | $0.0992 \pm 0.0016$              | _              | $0.1032  {}^{+0.0004}_{-0.0006}$ | $0.1036 \pm 0.0007$             | $0.1034 \pm 0.0004$                              |
| $R_c^0$                                                              | $0.1721 \pm 0.0030$              | _              | $0.17223 \pm 0.00006$            | $0.17223 \pm 0.00006$           | $0.17223 \pm 0.00006$                            |
| $R_b^0$                                                              | $0.21629 \pm 0.00066$            | -              | $0.21474 \pm 0.00003$            | $0.21475 \pm 0.00003$           | $0.21473 \pm 0.00003$                            |
| $\overline{m}_c$ [GeV]                                               | $1.27 \substack{+0.07 \\ -0.11}$ | yes            | $1.27 \substack{+0.07 \\ -0.11}$ | $1.27^{+0.07}_{-0.11}$          | -                                                |
| $\overline{m}_b$ [GeV]                                               | $4.20  {}^{+0.17}_{-0.07}$       | yes            | $4.20\substack{+0.17\\-0.07}$    | $4.20^{+0.17}_{-0.07}$          | -                                                |
| $m_t [{ m GeV}]$                                                     | $173.18\pm0.94$                  | yes            | $173.52\pm0.88$                  | $173.14\pm0.93$                 | $175.8^{+2.7}_{-2.4}$                            |
| $\Delta \alpha^{(5)}_{\rm had}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$ | $2757 \pm 10$                    | yes            | $2755 \pm 11$                    | $2757 \pm 11$                   | $2716^{+49}_{-43}$                               |
| $lpha_{\scriptscriptstyle S}(M_Z^2)$                                 | -                                | yes            | $0.1191 \pm 0.0028$              | $0.1192 \pm 0.0028$             | $0.1191 \pm 0.0028$                              |
| $\delta_{\rm th} M_W$ [MeV]                                          | $[-4,4]_{ m theo}$               | yes            | 4                                | 4                               | -                                                |
| $\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)                 | $[-4.7, 4.7]_{\rm theo}$         | yes            | -1.4                             | 4.7                             | -                                                |

# Fit-Results (2/2)



### **Indirect** Determinations

Perform fit for each parameter or observable without using the corresponding constraint

mH = 94 (+25,-22) GeV
mW =80.359 ± 0.011 GeV
mt = 175.8 (+2.7,-2.4) GeV





### Electroweak Physics at the LHC

Summary and Conclusion Matthias Schott (CERN)

LHC on good path towards precision physics with W and Z High precision measurements of Diboson-production just about to come with the 2012 data-set
Agreement with theory across orders of magnitude is impressive
Tevatron will be better on mW and mt for a long(?) time
EW Fit in a fair agreement with a SM-Higgs with mH = 126GeV

Future precision measurements help disentangle new physics ?