DESY theory workshop: Lessons from the first phase of the LHC

Motivic multiple zeta values and superstring amplitudes

Oliver Schlotterer (AEI Potsdam)

based on: 1205.1516: OS, St. Stieberger

1106.2645, 1106.2646: C. Mafra, OS, St. Stieberger

26.09.2012

Introduction: Superstring N point disk amplitude

Color stripped tree amplitude for scattering N massless open string states

$$\mathcal{A}(1,2,\ldots,N;\alpha') = \sum_{\pi \in S_{N-3}} \mathcal{A}^{\mathrm{YM}}(1,2_{\pi},\ldots,(N-2)_{\pi},N-1,N) F^{\pi}(\alpha')$$

[Mafra, OS, Stieberger 1106.2645, 1106.2646]

• decomposes into (N-3)! field theory subamplitudes $\mathcal{A}_{\pi \in S_{N-3}}^{\text{YM}}$

• string effects (α' dependence) from generalized Euler integrals $F^{\pi}(\alpha')$

Introduction: Superstring N point disk amplitude

Color stripped tree amplitude for scattering N massless open string states

$$\mathcal{A}(1,2,\ldots,N;\alpha') = \sum_{\pi \in S_{N-3}} \mathcal{A}^{\mathrm{YM}}(1,2_{\pi},\ldots,(N-2)_{\pi},N-1,N) F^{\pi}(\alpha')$$

[Mafra, OS, Stieberger 1106.2645, 1106.2646]

- decomposes into (N-3)! field theory subamplitudes $\mathcal{A}_{\pi \in S_{N-3}}^{\text{YM}}$
- string effects (α' dependence) from generalized Euler integrals $F^{\pi}(\alpha')$
- consistent with field theory limit: $F^{\pi}(\alpha' \to 0) = \delta^{\pi}_{(2,3,...,N-2)}$

• valid for states of $\mathcal{N} = 1$ SYM in D = 10 (or $\mathcal{N} = 4$ SYM in D = 4)

• remain valid for the gluon's SUSY multiplet for $\mathcal{N} < 4$ compactification

Euler integrals F^{π} only depend on dimensionless Mandelstam variables:

$$s_{ij} = \alpha' (k_i + k_j)^2$$

In a disk boundary parametrization $z \in \mathbb{R}$ with $(z_1, z_{N-1}, z_N) = (0, 1, \infty)$:

$$F^{\pi}(\alpha') = \prod_{\substack{k=2\\N-3 \text{ integrations}}}^{N-2} \int_{z_i < z_{i+1}} \mathrm{d}z_k \prod_{\substack{i < j\\ result \text{ of CFT correlation function}}}^{N-2} \prod_{\substack{k=2\\m=1}}^{N-2} \sum_{m=1}^{k-1} \frac{s_{\pi(m)\pi(k)}}{z_{\pi(m)\pi(k)}},$$

Taylor expansion of F^{π} in $s_{ij} \longrightarrow \alpha'$ expansion of stringy physics

Euler integrals F^{π} only depend on dimensionless Mandelstam variables:

$$s_{ij} = \alpha' (k_i + k_j)^2$$

In a disk boundary parametrization $z \in \mathbb{R}$ with $(z_1, z_{N-1}, z_N) = (0, 1, \infty)$:

$$F^{\pi}(\alpha') = \prod_{\substack{k=2\\N-3 \text{ integrations}}}^{N-2} \int_{z_i < z_{i+1}} dz_k \prod_{\substack{i < j\\ result \text{ of CFT correlation function}}}^{N-2} \sum_{m=1}^{k-1} \frac{s_{\pi(m)\pi(k)}}{z_{\pi(m)\pi(k)}},$$

Taylor expansion of F^{π} in $s_{ij} \longleftrightarrow \alpha'$ expansion of stringy physics

 $\forall \text{ color ordering } \Sigma \in S_N \exists \text{ separate set of functions } \{F_{\Sigma}^{\pi}, \ \pi \in S_{N-3}\}:$ $\mathcal{A}\big(\Sigma(1,2,\ldots,N);\alpha'\big) \iff F_{\Sigma}^{\pi}(\alpha') = \prod_{k=2}^{N-2} \int_{z_{\Sigma(i)} < z_{\Sigma(i+1)}} \mathrm{d} z_k \ldots$

 Σ dependent integration range

Any subamplitude $\mathcal{A}(\Sigma(1, 2, ..., N); \alpha')$ with $\Sigma \in S_N$ can be expanded in

the basis
$$\left\{ \mathcal{A}_{\sigma}(\alpha') \equiv \mathcal{A}(1, \sigma(2, 3, \dots N - 2), N - 1, N; \alpha'), \sigma \in S_{N-3} \right\}$$

[Bjerrum-Bohr, Damgaard, Vanhove 0907.1425; Stieberger 0907.2211]

 \implies sufficient to compute $\mathcal{A}_{\sigma}(\alpha')$ with $\sigma \in S_{N-3}$:

$$\mathcal{A}_{\boldsymbol{\sigma}}(\boldsymbol{\alpha}') = \sum_{\boldsymbol{\pi} \in S_{N-3}} F_{\boldsymbol{\sigma}}^{\boldsymbol{\pi}}(\boldsymbol{\alpha}') \mathcal{A}_{\boldsymbol{\pi}}^{\mathrm{YM}}$$

 α' dependent $(N-3)! \times (N-3)!$ matrix $F_{\sigma}^{\pi}(\alpha')$ acting on the

(N-3)! cpt. vector $\mathcal{A}_{\pi}^{\mathrm{YM}} \equiv \mathcal{A}^{\mathrm{YM}}(1, \pi(2, 3, \dots, N-2), N-1, N)$

Any subamplitude $\mathcal{A}(\Sigma(1, 2, ..., N); \alpha')$ with $\Sigma \in S_N$ can be expanded in

the basis
$$\left\{ \mathcal{A}_{\sigma}(\alpha') \equiv \mathcal{A}(1, \sigma(2, 3, \dots N - 2), N - 1, N; \alpha'), \sigma \in S_{N-3} \right\}$$

[Bjerrum-Bohr, Damgaard, Vanhove 0907.1425; Stieberger 0907.2211]

 \implies sufficient to compute $\mathcal{A}_{\sigma}(\alpha')$ with $\sigma \in S_{N-3}$:

$$\mathcal{A}_{\boldsymbol{\sigma}}(\alpha') = \sum_{\pi \in S_{N-3}} F_{\boldsymbol{\sigma}}^{\pi}(\alpha') \mathcal{A}_{\pi}^{\mathrm{YM}}$$

 α' dependent $(N-3)! \times (N-3)!$ matrix $F_{\sigma}^{\pi}(\alpha')$ acting on the

(N-3)! cpt. vector $\mathcal{A}_{\pi}^{\mathrm{YM}} \equiv \mathcal{A}^{\mathrm{YM}}(1, \pi(2, 3, \dots, N-2), N-1, N)$

Aim of the talk: Investigate the structure of the matrix $F_{\sigma}^{\pi}(\alpha')$

... and the appearance of multiple zeta values $\zeta_{n_1,n_2,\ldots,n_r}$ therein.

<u>Outline</u>

I. Multiple zeta values and their \mathbb{Q} relations

II. First look at disk amplitude: matrix multiplications

III. Motivic multiple zeta values

IV. Second look at disk amplitude: motivic structure

V. Main result

I. Multiple zeta values and their ${\mathbb Q}$ relations

 α' expansion of string amplitudes give rise to multiple zeta values (MZV's)

$$\zeta_{n_1,\dots,n_r} := \sum_{0 < k_1 < \dots < k_r} \frac{1}{k_1^{n_1} k_2^{n_2} \dots k_r^{n_r}}, \quad n_i \in \mathbb{N}, \ n_r \ge 2$$

of various weights (transcendentality degree) $w = \sum_{i=1}^{r} n_i$ and depth r.

MZV relations over \mathbb{Q} leave the following conjectural weight w bases \mathcal{Z}_w :

w	0	1	2	3	4	5	6	7	8	9	10
\mathcal{Z}_w	1	Ø	ζ_2	ζ_3	ζ_4	ζ_5	ζ_6	$\zeta_7, \zeta_2 \zeta_5$	$\zeta_8,\zeta_3\zeta_5$	$\zeta_9,\zeta_3^3,\zeta_2\zeta_7$	$\zeta_{10},\zeta_5^2,\zeta_{3,7},\zeta_7\zeta_3$
						$\zeta_3\zeta_2$	ζ_3^2	$\zeta_4\zeta_3$	$\zeta_{3,5},\ \zeta_2\zeta_3^2$	$\zeta_4\zeta_5,\ \zeta_6\zeta_3$	$\zeta_4\zeta_3^2,\zeta_2\zeta_{3,5},\zeta_2\zeta_3\zeta_5$
d_w	1	0	1	1	1	2	2	3	4	5	7

where $d_w := \dim_{\mathbb{Q}} \mathbb{Z}_w = d_{w-2} + d_{w-3}$ with $d_0 = 1$ and $d_1 = 0$.

[Zagier]

w	0	1	2	3	4	5	6	7	8	9	10
\mathcal{Z}_w	1	Ø	ζ_2	ζ_3	ζ_4	ζ_5	ζ_6	$\zeta_7, \zeta_2 \zeta_5$	$\zeta_8,\zeta_3\zeta_5$	$\zeta_9,\zeta_3^3,\zeta_2\zeta_7$	$\zeta_{10},\zeta_5^2,\zeta_{3,7},\zeta_7\zeta_3$
						$\zeta_3\zeta_2$	ζ_3^2	$\zeta_4\zeta_3$	$\zeta_{3,5}, \zeta_2\zeta_3^2$	$\zeta_4\zeta_5,\ \zeta_6\zeta_3$	$\zeta_4\zeta_3^2,\zeta_2\zeta_{3,5},\zeta_2\zeta_3\zeta_5$
d_w	1	0	1	1	1	2	2	3	4	5	7

Unlike odd single zeta values ζ_{2n+1} , even single ζ_{2n} are related over \mathbb{Q} ,

$$\zeta_2 = \frac{\pi^2}{6}, \qquad \zeta_{2n} = \frac{(-1)^{n+1}}{2(2n)!} B_{2n} (2\pi)^{2n} \in \mathbb{Q} \cdot \pi^{2n}$$

w	0	1	2	3	4	5	6	7	8	9	10
\mathcal{Z}_w	1	Ø	ζ_2	ζ_3	ζ_4	ζ_5	ζ_6	$\zeta_7,\ \zeta_2\zeta_5$	$\zeta_8,\zeta_3\zeta_5$	$\zeta_9,\zeta_3^3,\zeta_2\zeta_7$	$\zeta_{10},\zeta_5^2,\underline{\zeta_{3,7}},\zeta_7\zeta_3$
						$\zeta_3\zeta_2$	ζ_3^2	$\zeta_4\zeta_3$	$\underline{\zeta_{3,5}},\zeta_2\zeta_3^2$	$\zeta_4\zeta_5,\ \zeta_6\zeta_3$	$\zeta_4\zeta_3^2,\zeta_2\underline{\zeta_{3,5}},\zeta_2\zeta_3\zeta_5$
d_w	1	0	1	1	1	2	2	3	4	5	7

Unlike odd single zeta values ζ_{2n+1} , even single ζ_{2n} are related over \mathbb{Q} ,

$$\zeta_2 = \frac{\pi^2}{6}, \qquad \zeta_{2n} = \frac{(-1)^{n+1}}{2(2n)!} B_{2n} (2\pi)^{2n} \in \mathbb{Q} \cdot \pi^{2n}$$

MZVs of different depth related by shuffle & stuffle relations such as:

 $\zeta_m \zeta_n = \zeta_{m,n} + \zeta_{n,m} + \zeta_{m+n}$ $\zeta_{3,5} = -\frac{5}{2}\zeta_{2,6} - \frac{21}{25}\zeta_2^4 + 5\zeta_3\zeta_5$

MZVs of depth > 1 become inevitable starting from weight w = 8:

II. First look at disk amplitude: matrix multiplications

Observe a matrix-multiplicative structure in the α' expansion of $F(\alpha')$

$$\mathcal{A}(\alpha')\Big|_{N=5} = \left(1 + \zeta_2 P_2 + \zeta_3 M_3 + \zeta_4 P_4 + \zeta_5 M_5 + \underline{\zeta_2 P_2 \zeta_3 M_3}\right)$$

 $+ \zeta_{6} P_{6} + \frac{1}{2} \zeta_{3}^{2} M_{3}^{2} + \zeta_{7} M_{7} + \frac{\zeta_{2} P_{2} \zeta_{5} M_{5}}{\zeta_{2} P_{2} \zeta_{5} M_{5}} + \frac{\zeta_{4} P_{4} \zeta_{3} M_{3}}{\zeta_{4} P_{4} \zeta_{3} M_{3}} + \mathcal{O}(\alpha'^{8}) A^{YM}$

where entries of P_w, M_w are degree w polynomials in α' or s_{ij} , e.g.

$$P_2 = \begin{pmatrix} s_{12}s_{34} - s_{34}s_{45} - s_{51}s_{12} & s_{13}s_{24} \\ s_{12}s_{34} & s_{13}s_{24} - s_{24}s_{45} - s_{51}s_{13} \end{pmatrix}$$

$$M_{3} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}, \qquad m_{11} = s_{34}s_{45}(s_{34} + s_{45}) + s_{51}s_{12}(s_{51} + s_{12}) \\ - s_{12}s_{34}(s_{12} + s_{34}) - 2s_{12}s_{23}s_{34} \\ m_{12} = s_{13}s_{24}(s_{12} + s_{23} + s_{34} + s_{45} + s_{51}) \\ m_{21} = m_{12} \Big|_{2 \leftrightarrow 3}, \qquad m_{22} = m_{11} \Big|_{2 \leftrightarrow 3}$$

Promising pattern up to weight $w \leq 7 \dots$

$$\begin{aligned} \mathcal{A}(\alpha') \Big|_{N=5} &= \left(1 + \zeta_2 P_2 + \zeta_3 M_3 + \zeta_4 P_4 + \zeta_5 M_5 + \zeta_2 P_2 \zeta_3 M_3 \right. \\ &+ \left. \zeta_6 P_6 + \frac{1}{2} \zeta_3^2 M_3^2 + \zeta_7 M_7 + \zeta_2 P_2 \zeta_5 M_5 + \zeta_4 P_4 \zeta_3 M_3 + \mathcal{O}(\alpha'^8) \right) A^{\text{YM}} \end{aligned}$$

... in contrast to higher weights with depth ≥ 2 MZVs. E.g. at w = 11:

$$\begin{aligned} \mathcal{A} \Big|_{\substack{w=11\\N=5}} &= \left(\zeta_{11} M_{11} + \frac{1}{5} \zeta_{3,3,5} \left[M_3, \left[M_5, M_3 \right] \right] + \frac{1}{5} \zeta_{3,5} \zeta_3 \left[M_5, M_3 \right] M_3 + \zeta_3 \zeta_2^4 P_8 M_3 \right. \\ &+ \frac{1}{2} \zeta_3^2 \zeta_5 M_5 M_3^2 + \frac{1}{6} \zeta_3^3 \zeta_2 P_2 M_3^3 + \zeta_9 \zeta_2 \left(P_2 M_9 + 9 \left[M_3, \left[M_5, M_3 \right] \right] \right) \right. \\ &+ \left. \zeta_7 \zeta_2^2 \left(P_4 M_7 + \frac{6}{25} \left[M_3, \left[M_5, M_3 \right] \right] \right) + \left. \zeta_5 \zeta_2^3 \left(P_6 M_5 - \frac{4}{35} \left[M_3, \left[M_5, M_3 \right] \right] \right) \right) A^{\text{YM}} \end{aligned}$$

Promising pattern up to weight $w \leq 7 \dots$

$$\begin{aligned} \mathcal{A}(\alpha') \Big|_{N=5} &= \left(1 + \zeta_2 P_2 + \zeta_3 M_3 + \zeta_4 P_4 + \zeta_5 M_5 + \zeta_2 P_2 \zeta_3 M_3 \right. \\ &+ \left. \zeta_6 P_6 + \frac{1}{2} \zeta_3^2 M_3^2 + \zeta_7 M_7 + \zeta_2 P_2 \zeta_5 M_5 + \zeta_4 P_4 \zeta_3 M_3 + \mathcal{O}(\alpha'^8) \right) A^{\text{YM}} \end{aligned}$$

... in contrast to higher weights with depth ≥ 2 MZVs. E.g. at w = 11:

$$\begin{aligned} \mathcal{A} \Big|_{\substack{w=11\\N=5}} &= \left(\zeta_{11} M_{11} + \frac{1}{5} \zeta_{3,3,5} \left[M_3, \left[M_5, M_3 \right] \right] + \frac{1}{5} \zeta_{3,5} \zeta_3 \left[M_5, M_3 \right] M_3 + \zeta_3 \zeta_2^4 P_8 M_3 \right. \\ &+ \frac{1}{2} \zeta_3^2 \zeta_5 M_5 M_3^2 + \frac{1}{6} \zeta_3^3 \zeta_2 P_2 M_3^3 + \zeta_9 \zeta_2 \left(P_2 M_9 + 9 \left[M_3, \left[M_5, M_3 \right] \right] \right) \right. \\ &+ \left. \zeta_7 \zeta_2^2 \left(P_4 M_7 + \frac{6}{25} \left[M_3, \left[M_5, M_3 \right] \right] \right) + \left. \zeta_5 \zeta_2^3 \left(P_6 M_5 - \frac{4}{35} \left[M_3, \left[M_5, M_3 \right] \right] \right) \right) A^{\text{YM}} \end{aligned}$$

• ugly coefficients $\frac{1}{5}$, 9, $\frac{6}{25}$, $\frac{4}{35} \in \mathbb{Q}$ along with MZV's & M_i commutators

• preferred depth $r \geq 2$ element in the MZV bases $\mathcal{Z}_{w\geq 8}$ unclear, e.g.

$$\zeta_{3,5} = \zeta_3 \zeta_5 - \zeta_8 - \zeta_{5,3} = -\frac{5}{2} \zeta_{2,6} - \frac{21}{25} \zeta_2^4 + 5 \zeta_3 \zeta_5$$

III. Motivic MZVs

Lift the true MZVs $\in \mathbb{R}$ to motivic MZVs $\zeta_{n_1,...,n_r}^{\mathfrak{m}}$ which are defined purely

algebraically, form a Hopf algebra and satisfy relations of $\zeta_{n_1,...,n_r} \in \mathbb{R}$:

• eliminate the ambiguity of MZV basis choice

 \bullet automatically build in \mathbb{Q} relations among MZVs

[Brown 1102.1310]

III. Motivic MZVs

Lift the true MZVs $\in \mathbb{R}$ to motivic MZVs $\zeta_{n_1,...,n_r}^{\mathfrak{m}}$ which are defined purely algebraically, form a Hopf algebra and satisfy relations of $\zeta_{n_1,...,n_r} \in \mathbb{R}$:

- eliminate the ambiguity of MZV basis choice
- \bullet automatically build in $\mathbb Q$ relations among MZVs

[Brown 1102.1310]

Can map them to another Hopf algebra with more transparent basis:

$$\mathcal{U} = \underbrace{\mathbb{Q}\langle f_3, f_5, f_7, \ldots \rangle}_{\text{Hopf algebra on cogenerators } f_{odd}} \otimes \underbrace{\mathbb{Q}[f_2]}_{\text{commutes with } f_{odd}}$$

$$= \operatorname{span}\{ (\text{non-commutative polynomials in } f_{odd}) \otimes f_2^k, k \in \mathbb{N}_0 \}$$

$$\implies \text{reproduces recursion } d_w = d_{w-2} + d_{w-3} \text{ for conjectural } \dim_{\mathbb{Q}} \mathbb{Z}_w$$

Need isomorphism $\phi : \{\zeta_{n_1,\dots,n_r}^{\mathfrak{m}}\} \to \mathcal{U}$ preserving Hopf algebra structures.

- on single zetas: pick normalization $\phi(\zeta_n^{\mathfrak{m}}) = f_n$ where $f_{2k} = \frac{\zeta_{2k}}{(\zeta_2)^k} (f_2)^k$
- on depth ≥ 2 MZVs: determined by the coproduct, see [Brown 1102.1310]
- on products: $\phi(\zeta_{n_1,\dots,n_r}^{\mathfrak{m}} \cdot \zeta_{p_1,\dots,p_s}^{\mathfrak{m}}) = \phi(\zeta_{n_1,\dots,n_r}^{\mathfrak{m}}) \sqcup \phi(\zeta_{p_1,\dots,p_s}^{\mathfrak{m}})$ where

$$f_2^p f_{i_1} \dots f_{i_r} \sqcup f_2^q f_{i_{r+1}} \dots f_{i_s} = f_2^{p+q} \sum_{\sigma \in \Sigma(r,s)} f_{i_{\sigma(1)}} \dots f_{i_{\sigma(r+s)}}, \qquad i_j \in 2\mathbb{N} + 1$$

shuffle product \sqcup preserves relative order in $\{f_{i_1} \dots f_{i_r}\}$ and $\{f_{i_{r+1}} \dots f_{i_s}\}$.

Need isomorphism $\phi : \{\zeta_{n_1,\dots,n_r}^{\mathfrak{m}}\} \to \mathcal{U}$ preserving Hopf algebra structures.

- on single zetas: pick normalization $\phi(\zeta_n^{\mathfrak{m}}) = f_n$ where $f_{2k} = \frac{\zeta_{2k}}{(\zeta_2)^k} (f_2)^k$
- on depth ≥ 2 MZVs: determined by the coproduct, see [Brown 1102.1310]
- on products: $\phi(\zeta_{n_1,\dots,n_r}^{\mathfrak{m}} \cdot \zeta_{p_1,\dots,p_s}^{\mathfrak{m}}) = \phi(\zeta_{n_1,\dots,n_r}^{\mathfrak{m}}) \sqcup \phi(\zeta_{p_1,\dots,p_s}^{\mathfrak{m}})$ where $f_2^p f_{i_1} \dots f_{i_r} \sqcup f_2^q f_{i_{r+1}} \dots f_{i_s} = f_2^{p+q} \sum_{\sigma \in \Sigma(r,s)} f_{i_{\sigma(1)}} \dots f_{i_{\sigma(r+s)}}, \quad i_j \in 2\mathbb{N}+1$

shuffle product \sqcup preserves relative order in $\{f_{i_1} \dots f_{i_r}\}$ and $\{f_{i_{r+1}} \dots f_{i_s}\}$.

Examples at weights w = 8 and w = 11:

$$\phi(\zeta_{3,5}^{\mathfrak{m}}) = -5f_5f_3, \qquad \phi(\zeta_3^{\mathfrak{m}}\zeta_5^{\mathfrak{m}}) = f_3f_5 + f_5f_3$$
$$\phi(\zeta_{3,3,5}^{\mathfrak{m}}) = -5f_5f_3^2 + \frac{4}{7}f_5f_2^3 - \frac{6}{5}f_7f_2^2 - 45f_9f_2$$
$$\phi(\zeta_{3,5}^{\mathfrak{m}}\zeta_3^{\mathfrak{m}}) = -5f_5f_3 \sqcup f_3 = -5f_3f_5f_3 - 10f_5f_3^2$$

IV. Second look at disk amplitude: motivic structure

To simplify weight w = 11, pass to motivic MZVs $\zeta_{n_1,...n_r} \mapsto \zeta_{n_1,...n_r}^{\mathfrak{m}} \dots$ $\mathcal{A}^{\mathfrak{m}}\Big|_{\substack{w=11\\N=5}} = \left(\zeta_{11}^{\mathfrak{m}} M_{11} + \frac{1}{5}\zeta_{3,3,5}^{\mathfrak{m}} [M_3, [M_5, M_3]] + \frac{1}{5}\zeta_{3,5}^{\mathfrak{m}} \zeta_3^{\mathfrak{m}} [M_5, M_3]M_3 + \zeta_3^{\mathfrak{m}} (\zeta_2^{\mathfrak{m}})^4 P_8 M_3 + \frac{1}{2} (\zeta_3^{\mathfrak{m}})^2 \zeta_5^{\mathfrak{m}} M_5 M_3^2 + \frac{1}{6} (\zeta_3^{\mathfrak{m}})^3 \zeta_2^{\mathfrak{m}} P_2 M_3^3 + \zeta_9^{\mathfrak{m}} \zeta_2^{\mathfrak{m}} (P_2 M_9 + 9 [M_3, [M_5, M_3]]) + \zeta_7^{\mathfrak{m}} (\zeta_2^{\mathfrak{m}})^2 (P_4 M_7 + \frac{6}{25} [M_3, [M_5, M_3]]) + \zeta_5^{\mathfrak{m}} (\zeta_2^{\mathfrak{m}})^3 (P_6 M_5 - \frac{4}{35} [M_3, [M_5, M_3]]) \right) A^{\mathrm{YM}}$

... and apply isomorphism $\phi : \{\zeta_{n_1,...,n_r}^{\mathfrak{m}}\} \to \mathcal{U}$

$$\phi(\mathcal{A}^{\mathfrak{m}})\Big|_{\substack{w=11\\N=5}} = \left(f_{11}M_{11} + f_3^2 f_5 M_5 M_3^2 + f_3 f_5 f_3 M_3 M_5 M_3 + f_5 f_3^2 M_3^2 M_5 + P_2 f_2 (f_9 M_9 + f_3^3 M_3^3) + P_4 f_2^2 f_7 M_7 + P_6 f_2^3 f_5 M_5 + P_8 f_2^4 f_3 M_3\right) A^{\mathrm{YM}}$$

• unit coefficients everywhere (instead of the $\frac{1}{5}$, 6, $\frac{6}{25}$, $\frac{4}{35}$ above)

• democratic treatment of (f_3, M_3) and (f_5, M_5)

To summarize everything we know up to weight w = 11:

$$\begin{split} \phi(\mathcal{A}^{\mathfrak{m}}) \Big|_{N=5} &= \left(1 + f_2 P_2 + f_2^2 P_4 + f_2^3 P_6 + f_2^4 P_8 + f_2^5 P_{10}\right) \\ \times \left\{1 + f_3 M_3 + f_5 M_5 + f_3^2 M_3^2 + f_7 M_7 + f_3 f_5 M_5 M_3 + f_5 f_3 M_3 M_5 \right. \\ &+ f_9 M_9 + f_3^3 M_3^3 + f_5^2 M_5^2 + f_3 f_7 M_7 M_3 + f_7 f_3 M_3 M_7 + f_{11} M_{11} \\ &+ f_3^2 f_5 M_5 M_3^2 + f_3 f_5 f_3 M_3 M_5 M_3 + f_5 f_3^2 M_3^2 M_5 \left.\right\} A^{\mathrm{YM}} + \mathcal{O}(\alpha'^{12}) \end{split}$$

The f_2 powers with matrices P_{2k} act by left multiplication on

all non-commutative words in $\overrightarrow{f_{odd}} \overleftarrow{M_{odd}}$.

To summarize everything we know up to weight w = 11:

$$\begin{split} \phi(\mathcal{A}^{\mathfrak{m}}) \Big|_{N=5} &= \left(1 + f_2 P_2 + f_2^2 P_4 + f_2^3 P_6 + f_2^4 P_8 + f_2^5 P_{10}\right) \\ \times \left\{1 + f_3 M_3 + f_5 M_5 + f_3^2 M_3^2 + f_7 M_7 + f_3 f_5 M_5 M_3 + f_5 f_3 M_3 M_5 \right. \\ &+ f_9 M_9 + f_3^3 M_3^3 + f_5^2 M_5^2 + f_3 f_7 M_7 M_3 + f_7 f_3 M_3 M_7 + f_{11} M_{11} \\ &+ f_3^2 f_5 M_5 M_3^2 + f_3 f_5 f_3 M_3 M_5 M_3 + f_5 f_3^2 M_3^2 M_5 \left.\right\} A^{\mathrm{YM}} + \mathcal{O}(\alpha'^{12}) \end{split}$$

The f_2 powers with matrices P_{2k} act by left multiplication on

all non-commutative words in $\overrightarrow{f_{odd}} \overleftarrow{M_{odd}}$. Tempting to generalize:

$$\phi(\mathcal{A}^{\mathfrak{m}}) = \left(\sum_{k=0}^{\infty} f_2^k P_{2k}\right) \left\{\sum_{\substack{p=0\\ i_1,\dots,i_p\\ \in 2\mathbb{N}+1}}^{\infty} \int_{i_1} f_{i_1} f_{i_2} \dots f_{i_p} M_{i_p} \dots M_{i_2} M_{i_1}\right\} A^{\mathrm{YM}}$$

Explicit checks done up to $w \leq 16$ for N = 5 and $w \leq 8$ for N = 6.

V. Main result

 α' expansion of N-point disk amplitude:

[OS, Stieberger 1205.1516]

$$\phi(\mathcal{A}^{\mathfrak{m}}) = \left(\sum_{k=0}^{\infty} f_2^k P_{2k}\right) \left\{\sum_{\substack{p=0\\ i_1,\dots,i_p\\ \in 2\mathbb{N}+1}}^{\infty} \int_{\substack{k=0\\ i_1,\dots,i_p}}^{\infty} f_{i_1} f_{i_2} \dots f_{i_p} M_{i_p} \dots M_{i_2} M_{i_1}\right\} A^{\mathrm{YM}}$$

- "even sector": commutative element $f_2 = \phi(\zeta_2^{\mathfrak{m}})$ with matrices P_{2k}
- "odd sector": democratic sum over all non-commutative polynomials

$$f_{i_1}f_{i_2}\dots f_{i_p}M_{i_p}\dots M_{i_2}M_{i_1} \equiv \overrightarrow{f_{odd}} \overleftarrow{M_{odd}}$$
 with unit coefficients

V. Main result

 $\alpha' \text{ expansion of } N \text{-point disk amplitude:} \qquad [OS, Stieberger 1205.1516]$ $\phi(\mathcal{A}^{\mathfrak{m}}) = \left(\sum_{k=0}^{\infty} f_{2}^{k} P_{2k}\right) \left\{\sum_{\substack{p=0 \ i_{1}, \dots, i_{p} \\ \in 2\mathbb{N}+1}}^{\infty} f_{i_{1}} f_{i_{2}} \dots f_{i_{p}} M_{i_{p}} \dots M_{i_{2}} M_{i_{1}}\right\} A^{\text{YM}}$

- "even sector": commutative element $f_2 = \phi(\zeta_2^{\mathfrak{m}})$ with matrices P_{2k}
- "odd sector": democratic sum over all non-commutative polynomials

 $f_{i_1}f_{i_2}\dots f_{i_p}M_{i_p}\dots M_{i_2}M_{i_1} \equiv \overrightarrow{f_{odd}} \overleftarrow{M_{odd}}$ with unit coefficients

• at each weight w, only one matrix $P_w, M_w \sim s_{ij}^w$ to determine

• form of $\phi(\mathcal{A}^{\mathfrak{m}})$ independent on basis choice for \mathcal{Z}_w

• The isomorphism ϕ is invertible, so $\phi(\mathcal{A}^{\mathfrak{m}})$ carries complete information

Concluding remarks

- Complete superstring disk amplitudes follows via matrix-vector-product from (N-3)! YM subamplitudes: $\mathcal{A}_{\sigma}(\alpha') = \sum_{\pi \in S_{N-3}} F_{\sigma}^{\pi}(\alpha') \mathcal{A}_{\pi}^{\text{YM}}$
- α' expansion of $F(\alpha')$ involves MZVs of weight w at order α'^w .
- The structure of $F(\alpha')$ greatly simplifies when lifting $\zeta_{n_1,...,n_r}$ to motivic version $\zeta_{n_1,...,n_r}^{\mathfrak{m}}$ and making use of their Hopf algebra structure: Isomorphism $\phi : \{\zeta_{n_1,...,n_r}^{\mathfrak{m}}\} \to \{\prod_j f_{i_j}\}$ allows for all-weight-formula.

Concluding remarks

- Complete superstring disk amplitudes follows via matrix-vector-product from (N-3)! YM subamplitudes: $\mathcal{A}_{\sigma}(\alpha') = \sum_{\pi \in S_{N-3}} F_{\sigma}^{\pi}(\alpha') \mathcal{A}_{\pi}^{\text{YM}}$
- α' expansion of $F(\alpha')$ involves MZVs of weight w at order α'^w .
- The structure of $F(\alpha')$ greatly simplifies when lifting $\zeta_{n_1,...,n_r}$ to motivic version $\zeta_{n_1,...,n_r}^{\mathfrak{m}}$ and making use of their Hopf algebra structure: Isomorphism $\phi : \{\zeta_{n_1,...,n_r}^{\mathfrak{m}}\} \to \{\prod_j f_{i_j}\}$ allows for all-weight-formula.

Thank you for your attention !

Since the ϕ map is invertible, $\phi(\mathcal{A}^{\mathfrak{m}})$ contains all information on $\mathcal{A}^{\mathfrak{m}}$, e.g.

The shown $d_8 \times d_8$ and $d_{11} \times d_{11}$ matrices are non-singular!

Since the ϕ map is invertible, $\phi(\mathcal{A}^{\mathfrak{m}})$ contains all information on $\mathcal{A}^{\mathfrak{m}}$, e.g.

The shown $d_8 \times d_8$ and $d_{11} \times d_{11}$ matrices are non-singular $\forall X, Y$

However: Coproduct cannot detect f_w in $\phi(\zeta_{n_1,...,n_r}^{\mathfrak{m}})$ with $r \geq 2$ \implies ambiguity in P_w or $M_w \sim$ commutators of lower weight M_{odd} .