Simplified models	LHC limits	Conclusion

Long-lived staus in a simplified model approach

Jan Heisig (Hamburg University)

Universität Hamburg

Based on Jörn Kersten, JH: Phys. Rev. D86, 055020 (2012), 1203.1581 [hep-ph]

Desy Theory Workshop 2012

Jan Heisig (Hamburg University)

Introduction	Simplified models	LHC limits	Conclusion
•			
Introduction			

Introduction

- Most SUSY searches concentrate on neutralino LSP
- Gravitino (or axino) LSP cosmologically well motivated or even favored
- Very weak LSP coupling \rightarrow NLSP long-lived
- Lighter stau natural choice for the NLSP (or LOSP)
- NLSP determines signature at colliders:
 - Muon-like particle
 - \blacksquare For $\beta < 1 \rightarrow$ identification as a HSCP (ToF and $\mathrm{d}E/\mathrm{d}x$)

Introduction	Simplified models	LHC limits	Conclusion
•			
Introduction			

Introduction

- Most SUSY searches concentrate on neutralino LSP
- Gravitino (or axino) LSP cosmologically well motivated or even favored
- \blacksquare Very weak LSP coupling \rightarrow NLSP long-lived
- Lighter stau natural choice for the NLSP (or LOSP)
- NLSP determines signature at colliders:
 - Muon-like particle
 - \blacksquare For $\beta < 1 \rightarrow$ identification as a HSCP (ToF and $\mathrm{d}E/\mathrm{d}x$)

Here we show:

- General HSCP search (+2 hard jets) suitable for model-independent bounds on sparticle masses
- Direct and strong production in simplified model approach

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Simplified models

[Alwall et al. 0810.3921, LHC NPWG 1105.2838]

- Production and decay of gluinos and squarks: many parameters
- Reduction of parameters driven by low-scale phenomenology
- As few parameters as possible
- Divide problem into production and decay
- Introduce a discrete number of models serving as limiting cases

	Simplified models	LHC limits	Conclusion
	0000		
Simplified models			

Simplified models – Production

- Consider

 ğğ, *ğq*, *qq*, *qq*
- Depend on $m_{\tilde{g}}$, $m_{\tilde{q}}$
- Show results for:
 - Common mass $\widetilde{q} = \widetilde{u}, \widetilde{d}, \widetilde{s}, \widetilde{c}, \widetilde{b}$
 - Only lighter stop $\widetilde{q} = \widetilde{t}_1$
- \rightarrow 2 parameters

Jan Heisig (Hamburg University)

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Simplified models – Decay

- Every gluino or squark decays into a stau
- Decay chain affects
 - Stau velocity, i.e. number of identified HSCPs
 - Number and type of SM radiation
- Identified HSCP strongest contribution to potential discovery/exclusion: focus on velocity

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Simplified models – Decay

- Every gluino or squark decays into a stau
- Decay chain affects
 - Stau velocity, i.e. number of identified HSCPs
 - Number and type of SM radiation
- Identified HSCP strongest contribution to potential discovery/exclusion: focus on velocity
- Velocity depends on total phase space ~ $m_{
 m LCP} m_{\widetilde{ au}_1}$
- \blacksquare Impact of intermediate sparticles \rightarrow Limiting cases

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Extrema in stau mean velocity $\overline{\beta}_{\tilde{\tau}_1}$ (independent of β_{LCP})

Jan Heisig (Hamburg University)

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Extrema in stau mean velocity $\overline{\beta}_{\tilde{\tau}_1}$ (independent of β_{LCP})

Jan Heisig (Hamburg University)

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Extrema in stau mean velocity $\overline{\beta}_{\widetilde{\tau}_1}$ (independent of β_{LCP})

Model \mathcal{A} : The 'direct decay' (1). Model \mathcal{B} : (2) for the 1-step decay LCP $\rightarrow \widetilde{\chi}^0 \rightarrow \widetilde{\tau}_1$. Model \mathcal{C} : (2) for the 3-step decay LCP $\rightarrow \widetilde{\chi}^0_2 \rightarrow \widetilde{\ell} \rightarrow \widetilde{\chi}^0_1 \rightarrow \widetilde{\tau}_1$.

Jan Heisig (Hamburg University)

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Selection criteria and background

 $\begin{array}{ll} \mbox{Selection 1: } 2 \mbox{ staus (loose β-cut) + 2 hard jets $p_T > 200 $ GeV$.} \\ \mbox{Selection 2: } 2 \mbox{ staus only, β < 0.88 and $p_T > 150 $ GeV$} \\ \mbox{Selection 3: } 2 \mbox{ staus only, β < 0.73 and $p_T > 300 $ GeV$, buffering $ of tracker data $ \end{tabular} \end{array}$

Background:

- DY($\mu\mu$), $t\bar{t}$
- Strong reduction through velocity cut

	Simplified models	LHC limits	Conclusion
	00000		
Simplified models			

Selection criteria and background

Selection 1: 2 staus (loose β -cut) + 2 hard jets $p_T > 200 \text{ GeV}$. Selection 2: 2 staus only, $\beta < 0.88$ and $p_T > 150 \text{ GeV}$ Selection 3: 2 staus only, $\beta < 0.73$ and $p_T > 300 \text{ GeV}$, buffering of tracker data

Background:

- DY($\mu\mu$), $t\bar{t}$
- Strong reduction through velocity cut

Computation:

- Production: Prospino, MadEvent (channelwise weighting)
- Decay: SDECAY, Pythia; Detector: Delphes

	Simplified models	LHC limits	Conclusion
		00	
LHC limits			

Projected exclusion (discovery) limits

- Models A-C lie within narrow band
- Direct DY 'saves' model-independent approach
- Trigger: buffering important for long-term run

Jan Heisig (Hamburg University)

	Simplified models	LHC limits ○●	Conclusion
LHC limits			

Projected exclusion (discovery) limits II

- Conservative limits on squark and gluino masses 16 fb⁻¹@8 TeV: $m_{\tilde{g}} \gtrsim 1.4$ TeV, $m_{\tilde{q}} \gtrsim 1.6$ TeV, $m_{\tilde{t}_1} \gtrsim 950$ GeV
- Experiments might turn out to perform even better

Jan Heisig (Hamburg University)

Simplified models	LHC limits	Conclusion

Conclusion

- Long-lived stau scenario cosmologically well motivated
- Prominent HSCP signature → very few events required: LHC potential for exclusion & discovery similar
- Model-independent approach suitable
- Robust (conservative) bounds on $m_{\tilde{g}}, m_{\tilde{q}}, m_{\tilde{t}}$ and $m_{\tilde{\tau}_1}$
- From 2011 null-searches: $m_{\widetilde{ au}_1}>$ 216 GeV, $m_{\widetilde{g}}\gtrsim$ 1.1 TeV, $m_{\widetilde{q}}\gtrsim$ 1.4 TeV

Simplified models	LHC limits	Conclusion

Thank you for your attention!

Jan Heisig (Hamburg University)

Simplified models	LHC limits	Conclusion

Backup slides I

Exclusion for the 7TeV LHC run:

Jan Heisig (Hamburg University)

Backup slides II

Expected number of stopped stau events:

Jan Heisig (Hamburg University)