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Superconformal Chern Simons matter theories

• Such three-dimensional theories (for example N = 6 ABJM & N  = 8  
BLG) describe the low energy dynamics of multiple M2-branes.                        

•N = 6 ABJM has many properties in common with 4D N  = 4 SYM. 
Spectrum of anomalous dimensions is integrable in the planar limit & it 
possesses a holographic dual string theory. 

• Scattering amplitudes also share many features with N  = 4 SYM 
however the N  = 6 ABJM theories are less constrained by 
supersymmetry and provide interesting generalisations.

• Some evidence that on-shell they are related to three-
dimensional supergravity in flat space e.g. 

“N = 8 BLG”2 ≡ N = 16 E8(8) sugra



N  = 6 ABJM theory

On-shell field content: four complex bosons and four fermions

transforming in bifundamental rep. of                                    gauge 
group.                        .

Useful to introduce real* spinors for onshell momenta

and Graßmann variables                                 for on-shell  superfield

& conjugate fermionic superfield        
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 We can define colour ordered, planar amplitudes

sum over all permutations of even and odd sites modulo cyclic permutations by 
two sites.
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 We can define colour ordered, planar amplitudes

sum over all permutations of even and odd sites modulo cyclic permutations by 
two sites.

Ex. Four-points tree-level

Lorentz invariants:

(Super)momenta:
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B̄n

+ . . .

A4(Φ̄1, Φ2, Φ̄3, Φ4) =
δ(3)(P )δ(6)(Q)

〈12〉〈23〉



•BCFW recursion relations generates all tree-level amplitudes (in principle) and 
proves there exists aYangian symmetry for all tree-level amplitudes. [Gang, 
Huang, Koh, Lee, & Lipstein]

•Orthogonal Graßmannian formulation. [Lee]

•Dual to AdS4 x CP3 type-IIA string theory
‣evidence of classical integrability
‣ integrable spectrum (ABA & TBA/Y-system)  [Gromov & Vieira] 

[Gromov, Kazakov, Vieira][Bombardelli, Fioravanti and Tateo]
‣ some evidence for a duality between amplitudes and Wilson loops at 

four points
e.g. [Henn, Plefka,Wiegandt], [Chen&Huang], [Bianchi et al], [Wiegandt]



Result found using “anomalous” symmetries and unitarity  [Bargheer, Beisert, 
Loebbert, TMcL]:

where

‣ Answer is proportional to Yangian invariants, however there are additional 
discontinuities when two particles become collinear.
‣ Also found in a Feynman graph calculation. [Bianchi,Leoni, Mauri, Penati, 
Santambrogio] (see also [Huang, Caron-Huot], [Brandhuber, Travaglini and Wen]).

‣ Doesn’t match bosonic Wilson loop, more akin to N=4 SYM NMHV 
amplitude. Optimistic conclusion:
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c6(1̄, 2̄, 3̄, 4̄, 5̄, 6̄) = sgn〈12〉sgn〈34〉sgn〈56〉 + sgn〈61〉sgn〈23〉sgn〈45〉.

Need a new super-Wilson loop.

Six-point one-loop amplitude



Can express the ABJM theory by rewriting the  U(Nc) x U(Nc) color structure as a 
three-algebra [Bagger & Lambert]:

Complex vector space with basis Ta, a =1,..., Nc2 and trilinear bracket

A key property is the fundamental identity (c.f. Jacobi identity)
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SCS as a three-algebra theory



Enhanced N = 8 supersymmetry (BLG-theory) when the vector space is real 
and structure constants are totally antisymmetric

Only one finite dimensional example.
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SCS as a three-algebra theory

Can express the ABJM theory by rewriting the  U(Nc) x U(Nc) color structure as a 
three-algebra [Bagger & Lambert]:



Superfields transform as fundamental representations of three-algebra.
Four point amplitudes:

A general amplitude is written as a sum of quartic graphs:

            e.g.
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b1f
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Color-kinematics duality
Claim: there exists a duality between color and kinematics analogous to that in 
YM [Bern, Johansson & Carrasco]:

Different color structures are related by Fundamental identity:

There exists numerators satisfying the same relations:

Evidence: four points (trivial) and six points (non-trivial)
‣ Implies non-trivial relations between color ordered amplitudes
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Doubling to Supergravity

Given numerators satisfying the fundamental identities we can replace the color 
structures with another copy of the numerators:

This defines the scattering amplitudes for a theory with a spectrum 
given by the square of gauge theory (c.f. KLT, BCJ)

•N  = 8 BLG case gives a theory with 128 bosons + 128 fermions and N  = 16 
supersymmetry.
• Only has amplitudes with even numbers of external legs. 
• This theory will have a hidden three-algebra structure in its kinematics!
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N = 16 Supergravity

•Maximally supersymmetric 3D supergravity constructed by Marcus and 
Schwarz has 128 bosons and 128 fermions transforming as SO(16) spinors ⇒	 
correct spectrum and no odd-point amplitudes. 

•Can be found by dimensional reduction and duality transformation of 4D N = 
8 supergravity:
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•Maximally supersymmetric 3D supergravity constructed by Marcus and 
Schwarz has 128 bosons and 128 fermions transforming as SO(16) spinors ⇒	 
correct spectrum and no odd-point amplitudes. 

•Can be found by dimensional reduction and duality transformation of 4D N = 
8 supergravity.

• Four-point amplitude is the square of BLG four-point:

• Six-point is:

where the numerators are those of the SCS theory and the sum is over the same 
quartic graphs.  
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N = 16 Supergravity



Conclusions & Outlook

 There are interesting structures in three-dimensional supersymmetric 
scattering amplitudes.

 Provided evidence for tree-level color-kinematics in ABJM (and BLG) 
theories when written as three-algebra theories.

 Provided evidence that one can, á la BCJ,  “double” BLG theory into N = 16 
E8 supergravity and hence for a hidden three-algebra structure in 3D supergravity. 

 Does this color-kinematics duality persist to higher points? Loop integrands?

 Is N = 16 3D supergravity finite? 


