Towards a melric-like higher-spin gauge theory in 2+1 dimensions

based on arxiv:1208.1861
(w. A. Campoleoni, S. Pfenninger, S. Theisen)

Stefan Fredenhagen Max-Planck-Institut für Gravitationsphysik

Why $2+1$ dimensions?

Gravity in $2+1$ dimensions as toy model: - No propagating degrees of freedom

$$
\begin{aligned}
R_{\mu \nu \lambda \sigma} & =C_{\mu \nu \lambda \sigma}+\frac{2}{d-2}\left(g_{\mu[\lambda} R_{\sigma] \nu}-g_{\nu[\lambda} R_{\sigma] \mu}\right) \\
& =0 \quad-\frac{2}{(d-1)(d-2)} R g_{\mu[\lambda} g_{\sigma] \nu}
\end{aligned}
$$

- Black holes exist for $\Lambda<0 \quad$ [Bañados,
Teitelboim, zanelli] Black hole entropy can be studied. AdS/CFT concepts can be tested. Asymptotic symmetries: Virasoro \oplus Virasoro central charge $c=\frac{3 \ell}{2 G}$
[Brown,Henneaux]

Higher spins
Higher spin extensions of gravity simpler in $2+1$ than in higher dimensions: no propagating degrees of freedom

- asymptotic symmetries:
[Henneaux,Rey]
Virasoro $\longrightarrow \mathcal{W}_{N}, \mathcal{W}_{\infty}$
- generalisations of black holes [Gulperle,Kraus] [Ammon, Gulperle,Kraus,Perlmukter]
- AdS/CFT proposal: duality between HS gravity and minimal models [Gaberdiel, Gopakumar]

Frame-like vs. Melric-like
Most of this work is based on a frame-like formulation:

Generalisation of $S O(2,2)$ Chern-Simons description of $2+1$ gravity with $\Lambda<0$

A metric-like formulation would be nice:

- better understand geometry of BHs
- use standard field theoretic tools
- study relation between frame-like and metric-like formulation

Concent
The relation between frame- and metric-like formulation of a spin 3 field coupled to $2+1$-gravity

- Review of pure gravity in $2+1$ dim.
- Higher spin gauge theories in $2+1$ dim.
- From frame-like to metric-like
- Applications and developments

$2+1$ gravity

Einstein-Hilbert action

$$
S_{\mathrm{EH}}[g]=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g} R
$$

Introduce vielbeine e_{μ}^{a} with $e_{\mu}^{a} e_{\nu}^{b} \kappa_{a b}=g_{\mu \nu}$, and spin connections $\omega_{\mu}^{a b} \longrightarrow \omega_{\mu}^{a}=f^{a}{ }_{b c} \omega_{\mu}^{b c}$.

$$
S[e, \omega]=\frac{1}{8 \pi G} \int \operatorname{tr}(e \wedge R) \text { with } R=d \omega+\omega \wedge \omega
$$

reproduces the Einstein-Hibert action for $d e+\omega \wedge e+e \wedge \omega=0$ (e.o.m. for ω).

Diffeomorphisms
Gauge invariance:

$$
\begin{aligned}
\delta e & =[e, \Lambda] \\
\delta \omega & =d \Lambda+[\omega, \Lambda]
\end{aligned}
$$

$$
\delta e=d \xi+[\omega, \xi]
$$

$$
\delta \omega=0
$$

Local Lorentz rotation

Local translation

For $\xi^{a}=e_{\mu}^{a} v^{\mu}$ we have

$$
\begin{array}{rlr}
\delta e_{\mu}^{a}= & e_{\lambda}^{a} \partial_{\mu} v^{\lambda}+v^{\lambda} \partial_{\lambda} e_{\mu}^{a} & \longleftarrow \text { Diffeo } \\
& +v^{\lambda}\left(\partial_{[\mu} e_{\lambda]}^{a}+f^{a}{ }_{b c} \omega_{[\mu}^{b} e_{\lambda]}^{c}\right) & \longleftarrow 0 \text { by e.o.m. } \\
& +f^{a}{ }_{b c} v^{\lambda} \omega_{\lambda}^{b} e_{\mu}^{c} & \longleftarrow \text { Lorentz }
\end{array}
$$

Note: Never used that Lie algebra was so (2,1).

Higher Spins

Two approaches:

- Second order/Metric-like
$g_{\mu \nu} \longrightarrow$ tensor field $\varphi_{\mu_{1} \ldots \mu_{s}}$
- First order/Frame-like
$e_{\mu}^{a} \longrightarrow$ generalised Vielbein $e_{\mu}^{a_{1} \ldots a_{s-1}}$

Melric-like
Free massless spin s particle
\longrightarrow fully symmetric tensor $\varphi_{\mu_{1} \ldots \mu_{s}}$

- $\varphi_{\mu_{1} \ldots \mu_{s-4} \lambda} \lambda^{\nu}=0$ (double traceless)
- $\square \varphi_{\mu_{1} \ldots \mu_{s}}-\partial_{\left(\mu_{1} \mid\right.} \partial^{\lambda} \varphi_{\left.\mid \mu_{2} \ldots \mu_{s}\right) \lambda}{ }_{\lambda}$

$$
\begin{equation*}
+\partial_{\left(\mu_{1}\right.} \partial_{\mu_{2}} \varphi_{\left.\mu_{3} \ldots \mu_{s}\right) \lambda^{\lambda}}=0 \tag{1}
\end{equation*}
$$

- $\delta \varphi_{\mu_{1} \ldots \mu_{\mathrm{s}}}=\partial_{\left(\mu_{1}\right.} \xi_{\left.\mu_{2} \ldots \mu_{\mathrm{s}}\right)}$
where $\xi_{\mu_{1} \ldots \mu_{s-3} \lambda} \lambda=0$
Interactions: add term by [Bengtsson]
term while retaining gauge [Manvelyan, Mkrtchyan,Rühl] invariance.
(gauge invariance)
[Bengtsson, Bengtsson, Brink]
[Sagnokti, Taronna]
[Joung,Lopez,Taronna]

Frame-Like

Ceneralised vielbein $e_{\mu}^{a_{1} \ldots a_{s-1}}$ such chal

$$
\begin{aligned}
& \varphi_{\mu_{1} \ldots \mu_{s}}=\bar{e}_{\left(\mu_{1}\right.}^{a_{1}} \ldots \bar{e}_{\mu_{s-1}}^{a_{\text {background vielbein }}} e_{\left.\mu_{s}\right)}^{b_{1} \ldots b_{s-1}} \kappa_{a_{1} b_{1}} \ldots \kappa_{a_{s-1} b_{s-1}} \\
& \text { Cauge Eransformakions }
\end{aligned}
$$

$$
\delta e_{\mu}^{a_{1} \ldots a_{s-1}}=\overline{\mathcal{D}}_{\mu} \xi^{a_{1} \ldots a_{s-1}}+\bar{e}_{\mu, b} \Lambda^{b, a_{1} \ldots a_{s-1}}
$$

wilh $\xi^{a_{1} \ldots a_{s-1}}=\xi^{\mu_{1} \ldots \mu_{s-1}} \bar{e}_{\mu_{1}}^{a_{1}} \ldots \bar{e}_{\mu_{s-1}}^{a_{s-1}}$.
Spin conneckions

$$
\delta \omega_{\mu}^{b, a_{1} \ldots a_{s-1}}=\overline{\mathcal{D}}_{\mu} \Lambda^{b, a_{1} \ldots a_{s-1}}+\bar{e}_{\mu, c} \Lambda^{b c_{,} a_{1} \ldots a_{s-1}}
$$

$$
-\delta \omega \frac{b c, a_{1} \ldots a_{s-1}}{}=\overline{\mathcal{D}}_{\mu} \Lambda^{b c, a_{1} \ldots a_{s-1}}, \bar{c}_{\mu, d} \Lambda_{\Lambda}^{b c d, a_{1} \ldots a_{s-1}}
$$

$$
\begin{aligned}
& \bullet \\
& \bullet \\
& \bullet
\end{aligned}
$$

Action

Dualise: $\quad \omega_{\mu}^{a_{1} \ldots a_{s-1}}=\omega_{\mu}^{b, c\left(a_{2} \ldots a_{s-1}\right.} f^{\left.a_{1}\right)}{ }_{b c}$

$$
\begin{aligned}
S=\frac{1}{8 \pi G} & \int \operatorname{tr}(e \wedge(d \omega+\omega \wedge \omega)) \\
e & =\left(e_{\mu}^{a} J_{a}+e_{\mu}^{a_{1} a_{2}} J_{a_{1} a_{2}}+\ldots\right) d x^{\mu} \\
\omega= & \left(\omega_{\mu}^{a} J_{a}+\omega_{\mu}^{a_{1} a_{2}} J_{a_{1} a_{2}}+\ldots\right) d x^{\mu}
\end{aligned}
$$

Lie algebra structure e.g. for spin 3:

$$
\begin{array}{rlr}
{\left[J_{a}, J_{b}\right]} & =f_{a b}^{c} J_{c} & \\
{\left[J_{a}, J_{b c}\right]} & =f^{d}{ }_{a(b} J_{c) d} \\
{\left[J_{a b}, J_{c d}\right]} & =-\left(\kappa_{a(c} f_{d) v}^{f}+\kappa_{b(c} f_{d) a}^{f}\right) J_{f}
\end{array}
$$

From frame- to metric-like
Can we translate these consistent interacting theories to the metric-like formulation?
First step: Identify the fields
[Campoleoni,S.F., Pfenninger, Theisen]

$$
\begin{aligned}
g_{\mu \nu}= & \bar{e}_{\mu}^{a} \bar{e}_{\nu}^{b} \kappa_{a b}+\ldots \varphi_{\mu \nu \rho}= \\
\downarrow & e_{(\mu}^{a b} \bar{e}_{\nu}^{c} \bar{e}_{\rho)}^{d} \kappa_{a c} \kappa_{b d}+\ldots \\
g_{\mu \nu}= & \downarrow \\
e_{\mu}^{\mathcal{A}} e_{\nu}^{\mathcal{B}} \kappa_{\mathcal{A B}} \quad \varphi_{\mu \nu \rho}= & e_{\mu}^{\mathcal{A}} e_{\nu}^{\mathcal{B}} e_{\rho}^{\mathcal{C}} d_{\mathcal{A B C}} \\
& d_{\mathcal{A B C}} \sim \operatorname{tr}\left(t_{(\mathcal{A}} t_{\mathcal{B}} t_{\mathcal{C}}\right)
\end{aligned}
$$

Next: solve for the spin connection and express everything in metric-like fields

Solving for the spin connection
For gravity, the invertibility of the vielbein was crucial to solve for ω_{μ}^{a}.
Here, one can solve for it perturbatively:

$$
e_{\mu}^{\mathcal{A}} \rightarrow\binom{e_{\mu}^{a}}{e_{\mu}^{A}} \quad \begin{array}{ll}
a, b, c & \text { sL(2) directions } \\
A, B, C & \text { non-sL(2) directions }
\end{array}
$$

Then expand in e_{μ}^{A}.
All higher spin fields contain at least one e_{μ}^{A}
\longrightarrow Perturbative expansion in φ

Solving for the spin connection

$$
\partial_{[\mu} e_{\nu]}^{\mathcal{C}}+f_{\mathcal{D} \mathcal{E}}{ }^{\mathcal{C}} \omega_{[\mu}^{\mathcal{D}} e_{\nu]}^{\mathcal{E}}=0
$$

$\longrightarrow \partial_{[\mu} e_{\nu]}^{\mathcal{C}}+f_{\mathcal{D} E}{ }^{\mathcal{C}} \omega_{[\mu}^{\mathcal{D}} e_{\nu]}^{E}+f_{\mathcal{D} e^{\mathcal{C}}} \omega_{[\mu}^{\mathcal{D}} e_{\nu]}^{e}=0$

Result:

$\left(C_{2}\right)_{\mathcal{A}}^{\mathcal{D}} \omega_{\mu}^{\mathcal{A}}=e_{\mu}^{b}\left(\kappa_{a b} \delta_{\mathcal{C}}^{\mathcal{D}}+f_{a b}^{e} f_{e C^{\mathcal{D}}}+f_{a C^{\mathcal{E}}} f_{\mathcal{E} b}{ }^{\mathcal{D}}\right) V^{\mathcal{C}, a}$
$\left(C_{2}\right)_{\mathcal{A}}^{\mathcal{D}}=f^{\mathcal{D}}{ }_{m \mathcal{C}} f^{\mathcal{C} m}{ }_{\mathcal{A}}$ quadratic Casimir

$$
\begin{aligned}
& V^{\mathcal{C}, a}=-f_{m n}^{p} g_{0}^{\mu \rho} g_{0}^{\nu \sigma} e_{\rho}^{m} e_{\sigma}^{n}\left(\partial_{[\mu} e_{\nu]}^{\mathcal{C}}+f_{\mathcal{D} E}^{\mathcal{C}} \omega_{[\mu}^{\mathcal{D}} e_{\nu]}^{E}\right) \\
& g_{0, \mu \nu}=e_{\mu}^{a} e_{\nu}^{b} \kappa_{a b} \quad s L(2) \text { part of metric }
\end{aligned}
$$

Cauge parameters

Diffeomorphisms:

$$
\begin{aligned}
\xi^{\mathcal{A}}=e_{\mu}^{\mathcal{A}} \xi^{\mu} \curvearrowright & \xi^{\mu}=g^{\mu \nu} \bar{e}_{\nu}^{a} \xi^{b} \kappa_{a b}+ \\
\begin{array}{l}
\text { Projector on } \\
\text { diffeomorphisms: }
\end{array} & \xi^{\mu}=g^{\mu \nu} e_{\nu}^{\mathcal{A}} \xi^{\mathcal{B}} \kappa_{\mathcal{A B}}
\end{aligned}
$$

$P_{\mathcal{C}}^{\mathcal{A}}=e_{\mu}^{\mathcal{A}} g^{\mu \nu} e_{\nu}^{\mathcal{B}} \kappa_{\mathcal{B C}} \quad P_{\mathcal{B}}^{\mathcal{A}} P_{\mathcal{C}}^{\mathcal{B}}=P_{\mathcal{C}}^{\mathcal{A}}$
spin 3 Eransformations:

$$
\begin{aligned}
\xi^{a b} & =\bar{e}_{\mu}^{a} \bar{e}_{\nu}^{b} \xi^{\mu \nu}+\ldots \\
\longrightarrow \xi^{\mathcal{A}} & =d^{\mathcal{A}}{ }_{\mathcal{B C}} e_{\mu}^{\mathcal{B}} e_{\nu}^{\mathcal{C}} \xi^{\mu \nu}+\ldots \\
\longrightarrow \xi^{\mathcal{A}} & =(1-P)_{\mathcal{A}^{\prime}}^{\mathcal{A}} d^{\mathcal{A}^{\prime}}{ }_{\mathcal{B C}} e_{\mu}^{\mathcal{B}} e_{\nu}^{\mathcal{C}} \xi^{\mu \nu}+\ldots
\end{aligned}
$$

Spin 3 gauge transformation
With this ansalz:

$$
\begin{aligned}
\delta \varphi_{\mu \nu \rho}= & \nabla_{(\mu} \xi_{\nu \rho)}+\mathcal{O}\left(\varphi^{2}\right) \\
\delta g_{\mu \nu}=6 \xi^{\rho \sigma} & \left(\nabla_{\rho} \varphi_{\mu \nu \sigma}-\nabla_{(\mu} \varphi_{\nu) \rho \sigma}+\frac{1}{2} g_{\rho \mu} g_{\sigma \nu} \nabla \cdot \varphi_{\lambda}{ }^{\lambda}\right. \\
& +g_{\rho(\mu}\left(\nabla \cdot \varphi_{\nu) \sigma}-\nabla_{|\sigma|} \varphi_{\nu) \lambda} \lambda^{\lambda}-\nabla_{\nu)} \varphi_{\sigma \lambda^{\lambda}}\right) \\
& \left.-g_{\mu \nu}\left(\nabla \cdot \varphi_{\rho \sigma}-2 \nabla_{\rho} \varphi_{\sigma \lambda}{ }^{\lambda}\right)\right)+\mathcal{O}\left(\varphi^{3}\right)
\end{aligned}
$$

Looks ugly, but only half of the possible terms appear!

Action

There is a unique action up to quartic terms that is invariant under these transformations:

$$
\begin{aligned}
\mathcal{L}=\sqrt{g}(R & +\frac{1}{2} \varphi^{\mu \nu \rho}\left(\mathcal{F}_{\mu \nu \rho}-\frac{1}{2} g_{(\mu \nu} \mathcal{F}_{\rho) \lambda}{ }^{\lambda}\right) \\
& +\frac{9}{4} R_{\rho \sigma}\left(\varphi^{\rho}{ }_{\mu \nu} \varphi^{\sigma \mu \nu}-\frac{1}{2} \varphi^{\rho} \lambda^{\lambda} \varphi^{\sigma}{ }_{\kappa}{ }^{\kappa}\right) \\
& \left.-\frac{3}{4} R \varphi_{\mu \nu \rho} \varphi^{\mu \nu \rho}\right)+\mathcal{O}\left(\varphi^{4}\right)
\end{aligned}
$$

with $\quad \mathcal{F}_{\mu \nu \rho}=\square \varphi_{\mu \nu \rho}+\nabla_{(\mu} \nabla_{\nu} \varphi_{\rho) \lambda}{ }^{\lambda}$

$$
-\frac{1}{2}\left(\nabla^{\lambda} \nabla_{(\mu} \varphi_{\nu \rho) \lambda}+\nabla_{(\mu} \nabla^{\lambda} \varphi_{\nu \rho) \lambda}\right)
$$

Application: Black hole entropy

- $\Lambda>0$: BTZ black holes in $2+1$ gravity
- HS gravity: black holes with nontrivial higher spin charge
[Gutperle, Xraus]
[Ammon, Gutperle,
- Characterised by a specific

Kraus, Perlmulter] holonomy of the frame-like fields

- Relations between temperature, mass, chemical pot. and charge \longrightarrow Entropy
- In a gauge with a smooth horizon we can determine Wald's entropy from metric-like description
\longrightarrow Disagreement

Higher Spin Ceomelry?
What is the principle behind the action? We would expect

$$
S=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g} \hat{R}
$$

with some generalised \hat{R}.
Recent progress by [Fujisawa, Nakayama]:
Introduce more vielbeine $e_{(\mu \nu)}^{\mathcal{A}} \sim d^{\mathcal{A}}{ }_{\mathcal{B C}} e_{\mu}^{\mathcal{B}} e_{\nu}^{\mathcal{C}}$ to get an invertible vielbein matrix $\left(\begin{array}{ll}e_{\mu}^{\mathcal{A}} & e_{(\mu \nu)}^{\mathcal{A}}\end{array}\right)$
Tangent bundle is extended to higher dimensional vector bundle.

Summary

- 2+1 dim. good testing ground for higher spin gauge theories
- Hope for a complete interacting metric-like theory?
- We determined the quadratic part in φ for metric-like action corresponding to frame-like st(3) theory
- Next order more complicated - need geometric insights?
- Application to black hole entropy

