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What are form factors?
Partially on-shell, partially off-shell observables:
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Higgs-gluon amplitudes

 

γ
q,q,g±

e+

e−
gem gstrong

O(q1) O(q2 )

 
H (q)

p1
p2

pn

£eff = λ  H  tr(FµνFµν )

 0 | tr(F
2 )(q) | p1p2pn

(Engelund, Roiban)



What are form factors

Form factors at weak coupling                        
- surprising relation to Higgs amplitudes in QCD

Form factors at strong coupling

Outlook

Outline



Weak coupling
(Brandhuber, Gurdogan, Mooney, Travaglini, GY)

(Brandhuber, Spence, Travaglini, GY)
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- unify not only super on-shell particles in N=4, 
  but also the operators in the stress tensor supermultiplets

Parke-Taylor formula for MHV form factors

Form factor/periodic Wilson line correspondence at one-loop

Super form factors dual MHV rules

(see also works by Bork, Kazakov, Vartanov)



(Brandhuber, Travaglini, GY)

- in terms of simple basis integrals

- numerical results

- we obtain very compact analytic expression

Unitarity method

“symbol” technique

2-loop 3-pt form factor
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(Goncharov, Spradlin, Vergu Volovich)



Surprising observation

This implies some new hidden relations between QCD and N=4 SYM. 
The knowledge of the N=4 may tell us more about QCD. 

It is still not clear why. 
Is this also true for higher points?
Is this also true for higher loops?
More data is needed.

H (q)→ 3 gluons

2-loop 3-pt form 
factor in N=4 SYM =

(Brandhuber, Travaglini, GY)

Leading transcendental 
piece of 2-loop Higgs 
amplitudes in QCD

(Gehrmann, Jaquier, Glover, Koukoutsakis)

0 | tr(F2 )(q) | g(p1)g(p2 )g(p3)

(work in progress in N=4 side)



Motivation to study 
strong coupling

a non-trivial part of strong coupling QCD amplitudes  
(at least for 3-point case? we need to go to AdS5 )

helpful to guess the “right” variables at weak coupling 
(in particular for the computations with symbols)

generalize on-shell method to off-shell observable at 
strong coupling  (to correlation functions?)
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Strong coupling picture

z = 0 z = ∞ r = 0 r = ∞

T-duality

N=4 SYM String in AdS5

pi pi

Amplitudes Wilson loops

(Alday, Maldacena)



Strong coupling picture

z = 0 z = ∞ r = 0 r = ∞

T-duality

N=4 SYM String in AdS5
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q
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(Alday, Maldacena)
(Maldacena, Zhiboedov)



An Bird’s-eye view 

Minimum surface 
problem

 (String equations)
Hitchin equations

Y systemAmplitudes or 
Form factors

Pohlmeyer 
reduction

Small solutions

polynomial P(z)

Area

Boundary 
conditions

(see the series papers by Alday, Maldacena, Gaiotto, Sever, Vieira)

 Integrability 
AdS/CFT
T-duality ζ

SU(4) with Z4 -projection

(Yang, n=4K case)



Small solutions
The underlying idea: 
relate spacetime variables to the solutions on the worldsheet 

Pohlmeyer 
reduction

we have new variables 
and new equations

∂zψ = Bzψ , ∂z = Bzψ
∂z Bz − ∂z Bz + [Bz ,Bz ]= 0
where  B := A +Φ

X(z, z ) ↔  ψ (z, z )

si (z, z )

The most important variables are the small solutions:
for a given edge (cusp), there is a unique solution that decreases 
fastest when approaching that given edge. 
On the other hand, spacetime variables           (which directly relate 
to boundary condition) are given as the coefficients of big solutions.

There is a dictionary between small solutions and spacetime variables.

Xi = λi ∧ λi+1, Xi ⋅Xj = λi ,λi+1,λ j ,λ j+1 → si , si+1, s j , s j+1

X(z, z )



Polynomial P(z)
 P(z) = z

n−4 + an−2z
n−2 ++ a1z + a0

Information of boundary conditions (i.e. cross ratios) are 
(implicitly) given by the coefficients of the polynomial.

One may extract the information by computing the cycle integrals 
from the algebraic curve defined by:

x4 = P(z)

For AdS3 case it is much simpler: x2 = p(z)

 
dw∫ = P(z)1/4 dz∫

For form factors, there will 
be not only zeros but poles!



w-plane
The reason of introducing P(z): it is convenient to consider 
the small solution on w-plane, which is relation to z-plane 
by :

A single cover of z-plane

Small solutions have simpler structure on w-plane 
(since equations are simplified):

 dw = P(z)1/4dz, P(z) = zn−4 + an−2z
n−2 ++ a1z + a0

n/4 covers of w-plane, 
each cover contains 4-cusp

This picture 
tells us how 
to impose the 

boundary 
condition!



Y system

Ya,m (ζ )→
si , s j sk , sl
si , sk s j , sl

(ζ )Y functions: cross ratios 
defined by small solutions

Y system: a finite set of difference equations of Y functions

A natural truncation for amplitudes: si+n ∝ si

 s1, s2 , s1, s3 ,  s1, sn , s1, sn+1 = 0

a

m

Easy to solve numerically.  Area can be extracted from the Y functions.
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Form factor

q
sn+i is no longer simply proportional to si. 
One may think there are infinite number of cusps in the 
periodic picture, however, they are related by the monodromy.
This provides a truncation for the infinite long system.

(Maldacena, Zhiboedov)

si

a

m

non-trivial 
interplay here!



Monodromy
Monodromy defined by 
boundary conditions with 
spacetime variables:

 λi+n =Ω  λi

q

For periodic cases:
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Monodromy in terms 
of small solutions:

si

not trivial to go from     to  Ω Ω



Truncation of Y system
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From the monodromy and cyclic property:

we can obtain a relation between sn+i and si at the same point of the 
worldsheet, which provides a truncation for the form factor Y system.

For AdS3 (SU(2)) the truncation is very simple for general monodromy.

For AdS5 (SU(4)) case, the main challenge is to truncate the integrable 
system in a conformal invariant way.  Simplification is expected happen 
for the simpler periodic case. 

(Maldacena, Zhiboedov)



Multi-operator insertion
Spacetime picture:

q2

q1

pi

x1,1

xn+1,1

x1,n+1

xn+1,n+1

 λi+n,i =Ω1  λi,i  λi,n+i =Ω 2  λi,i

Wilson loop closed on a torus!
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dual MHV rules works



Multi-operator insertion
Small solutions:
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We have a similar truncation 
as in the single insertion case, 
but with more Y functions.



periodic 
monodromy AdS3 AdS5

amplitudes

form 
factors

multi-
operators

Polynomial P(z)
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The study of boundary condition shows that there is a pole for 
each insertion of operators.

x4 = P(z)One needs to study the non-trivial algebraic curves defined by:

For AdS3 case (Maldacena, Zhiboedov)



Outlook

more (technical) details to work out

relation to QCD?

amplitudes -> form factors -> correlations functions 
at strong coupling?

apply monodromy picture at weak coupling -> 
hidden structure?



Thank you for your attention !


