Squark Flavor Implications from $B \rightarrow K^{(*)} \ell^+ \ell^-$

Christian Gross

26.9.12, DESY Theory Workshop 2012

based on JHEP 1208 (2012) 152 [arXiv:1205.1500] with A. Behring, G. Hiller, S. Schacht

Outline

a) constraints on effective $\mathscr{H}^{\Delta B=1}$ from $B \rightarrow K^{(*)} \ell^+ \ell^-$

b) implications for squark flavor mixing in MSSM

c) some predictions... (for $B_s \rightarrow \mu^+ \mu^-$, rare top decays, flavor models)

most important operators for $B \rightarrow K^{(*)}\ell^+\ell^-$:

 $O_7 \sim m_b [\bar{s}_L \sigma_{\mu\nu} b_R] F^{\mu\nu} \qquad O_{9(10)} \sim [\bar{s}_L \gamma_\mu b_L] [\bar{l} \gamma^\mu (\gamma_5) l]$

 $C_i = C_i^{SM} + C_i^{NP}$

- $|C_7|_{:}$ quite constrained by $b \rightarrow s \gamma$ data
- C₉,C₁₀: plenty of room for New Physics

$B \rightarrow K^{(*)} \ell^+ \ell^-$ at low $K^{(*)}$ recoil \longrightarrow

new C₉-C₁₀ constraints

$B \rightarrow K^{(*)} \ell^+ \ell^-$ at low $K^{(*)}$ recoil \longrightarrow

new C₉-C₁₀ constraints

$B \rightarrow K^{(*)} \ell^+ \ell^-$ at low $K^{(*)}$ recoil \longrightarrow

new C₉-C₁₀ constraints

Squark mass matrices in SCKM basis

other squark flavor parameters:

quite constraint by $b \rightarrow s\gamma$ and/or subleading in C₉,C₁₀ !

C_{9,10}^{NP} from squark-chargino loops

SUSY parameter scan

test each parameter point for

- $b \rightarrow s\gamma$ constraints
- EW precision constraints
- Higgs-, chargino-, stop mass limits

maximal reach:

(I) for MFV-SUSY

- $|C_9^{NP}/C_9^{SM}| < 3\%$
- |C₁₀^{NP}/C₁₀SM|< 11%

(2) for $(\delta_{23}^u)_{LR} \neq 0$

- $|C_9^{NP}/C_9^{SM}| < 4\%$
- |C₁₀^{NP}/C₁₀SM|< 47%

	$\tan \beta$	m_{H^\pm}	M_2	$ \mu $	$m_{ ilde{t}_R}$	A_t	$(\delta^u_{23})_{LR}$
min.	3	300	100	80	170	-3000	-0.85
max.	15	1000	1000	1000	800	3000	0.85

Improvement of $(\delta_{23}^u)_{LR}$ -constraints

only $b \rightarrow s\gamma$:

including $B \rightarrow K^{(*)}I^+I^-$:

$$\begin{split} m_{\tilde{\nu}} &= 100 \, {\rm GeV}, \, m_{H^{\pm}} = 300 \, {\rm GeV}, \, \tan\beta = 4, \\ {\rm S:} & \\ M_2 &= 150 \, {\rm GeV}, \, \mu = -300 \, {\rm GeV}, \, m_{\tilde{q}} = 1000 \, {\rm GeV} \end{split}$$

other SUSY parameters:

Implications for $B_s \rightarrow \mu^+ \mu^-$

if effects from (pseudo-)scalar operators can be neglected:

 ${\cal B}(ar{B}_s o \mu^+ \mu^-) \propto f_{B_s}^2 |C_{10}|^2$

 $\implies \text{can (indirectly) infer:}$ $1 \times 10^{-9} \lesssim \mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) < 5(6) \times 10^{-9}$

SUSY can't completely cancel SM contribution
upper bound: comparable to exp. limit

 $\mathcal{B}(ar{B}_s o \mu^+ \mu^-) < 4.5\,(3.8) imes 10^{-9}$ [LHCb, PRL 108 (2012)]

Implications for rare top decays

- •negligible in SM
- •largest effect on t→c γ , t→c g, t→c Z rates in MSSM
- from gluino loops with $(\delta_{23}^u)_{LR}$ •we update previous upper limits [Cao et al, PRD 75, 2007]

required Br. ratios for 5σ
discovery at ATLAS: [Veloso, 2008]

	ATLAS $100 \mathrm{fb}^{-1}$
$t ightarrow c\gamma$	3.0×10^{-5}
$t \rightarrow cg$	1.4×10^{-3}
$t \rightarrow cZ$	1.4×10^{-4}

we find: $\mathcal{B}(t \to c\gamma) \lesssim 2.1 \times 10^{-8}$, $\mathcal{B}(t \to cg) \lesssim 7.2 \times 10^{-7}$, $\mathcal{B}(t \to cZ) \lesssim 1.0 \times 10^{-7}$

orders of magnitude too low...

Implications for flavor-models ?

constraints still not very strong only models with large $(\delta_{23}^u)_{LR} \sim A_{23}^u$ are affected

example: radiative flavor violation model of [Crivellin et al.;'11]

setup:	
$(Y_q^{tree})_{ij} = \delta_{i,3}\delta_{j,3}\lambda_q \qquad V_{CKM}^{tree} = 1_3$	
$ ilde{m}_Q^2, ilde{m}_U^2, ilde{m}_D^2$: diag, 1.+2. el. degenerate	
flavor-breaking from A-terms only!	

- quark mixing + masses generated from SUSYloops with flavorbreaking A-terms
- to generate V_{cb} in upsector need large A^u23

we can (further) constrain this model...

Conclusions

- we exploit improved constraints on C_9/C_{10} (stemming from theoretical and experimental progress in $B \rightarrow K^{(*)}\ell^+\ell^-$ decays)
- most sensitive SUSY flavor parameter: $(\delta_{23}^u)_{LR}$ we find $(\delta_{23}^u)_{LR} \approx 0.1$ (depending on flavor-diag. parameters)
- some implications:
 - ★ lower bound on $BR(B_s \rightarrow \mu^+ \mu^-)$ (in absence of scalar operators)
 - * invisibility of rare top decays at LHC strengthened
 - * can restrict models with large A^{u}_{23} (e.g. RFV models)