

Nuclear quantum optics with seeded FEL beams

Jörg Evers

Max-Planck-Institut für Kernphysik, Heidelberg

Science with seeded FEL beams, DESY, 20.07.2012

Light-matter interactions

Light-matter interactions

Optical laser fields control dynamics of outer electrons

Light-matter interactions

Optical laser fields control dynamics of outer electrons

Higher frequencies/intensities: excite / ionize core electrons

Light-matter interactions

- Optical laser fields control dynamics of outer electrons
- Higher frequencies/intensities: excite / ionize core electrons
- Even higher frequencies/intensities: excite nucleus

Outline

Introduction

Nuclear quantum optics

Future perspectives with seeded FELs

Nuclear resonance scattering

Student lab Uni Mailand

Nuclear resonance scattering

- Tool to investigate magnetic, structural and dynamic properties of matter
- Small linewidth of nuclear resonances (µeV-peV) is both essential feature and technical challenge
- Mößbauer effect leads to recoilless absorption and emission

W. Sturhahn, J. Phys.: Condens. Matter 16, S497 (2004)

⁵⁷Fe iron Mößbauer transition

Iron is of significance in biology, earth science, ...
 "Working horse" of nuclear resonance scattering
 Q ~ ω₀ / Γ ~ 10¹²

$$\lambda = 0.86 \text{ Å}$$
$$\hbar\omega_0 = 14.4 \text{ keV}$$
$$\hbar\Gamma = 4.7 \times 10^{-9} \text{ eV}$$
$$1/\Gamma = 141 \text{ ns}$$

Separating signal and background

- Nuclear resonances very narrow (µeV-peV)
- Nuclear scattering has delayed tail on time scale 1/ Example (⁵⁷Fe): 141 ns
- This allows to measure almost background-free using time gating

Elementary processes

Characteristic features in forward scattering

Outline

Introduction

Nuclear quantum optics

Future perspectives with seeded FELs

Synchrotron radiation vs. seeded FEL beams

	Synchrotron	Seeded XFEL
Bunch separation (ns)	200ns	200ns (microbunch)
Avg Flux (ph/s/ Γ)	5×10^{4}	2×10 ⁸
Fluence (ph/bunch/Γ)	10 ⁻²	6×10 ³

XFEL parameters		
10 ¹² photons/pulse		
rel. BW 6×10 ⁻⁵		
rep. rate 30kHz		

Synchrotron radiation vs. seeded FEL beams

XFEL parameters

10¹² photons/pulse

rel. BW 6×10⁻⁵

rep. rate 30kHz

	Synchrotron	Seeded XFEL
Bunch separation (ns)	200ns	200ns (microbunch)
Avg Flux (ph/s/ Γ)	5×10^{4}	2×10 ⁸
Fluence (ph/bunch/Γ)	10 ⁻²	6×10 ³

Two directions

Short, nonlinear, coherent ("new ideas")

nuclear parameters

(for 57 Fe)

energy 14.4 keV

linewidth 5 neV

Nonequilibrium lattice dynamics

- Nuclei can not only monochromatize to sub-meV
- **fs pulses** capture snapshots of fast dynamics
- XFEL can produce double pulses with low jitter (< 5 fs)</p>
- Small focus/isotope selective absorption provide high spatial resolution

unique

XFEL/NRS

features

- Long signal tail alleviates background / detection problems
- Example application: Heat transfer on nano scale

Geloni et al, arXiv:1011.3910 and HXRSS sumup; Shenoy and Röhlsberger, Hyperf. Int. 182, 157 (2008)

Nuclear quantum optics

Optical response of a single resonance

Electromagnetically induced transparency

Three-level Λ system

Medium is rendered transparent by shining light on it!

EIT is an archetype quantum optical effect with a multitude of applications

S. Harris, Physics Today 50, 36 (1997); M. Fleischhauer et al., Rev. Mod. Phys. 77, 633 (2005)

Electromagnetically induced transparency

Interpretation as coherence/interference effect:

If EIT conditions are satisfied:

- laser fields drive atom to coherent superposition of $|a\rangle$ and $|b\rangle$
- interference: amplitudes for $|a\rangle \rightarrow |c\rangle$ and $|b\rangle \rightarrow |c\rangle$ cancel

Magnetic switching

The level structure depends on applied magnetic field: Zeeman splitting

- In certain crystals (e.g. $FeBO_3$), the hyperfine field is very strong
 - (~ 30 T), and can be aligned via weak external fields (few Gauss)
- This allows to switch the direction of a very strong effective magnetic field in few ns in the lab

Volume 77, Number 15	PHYSICAL	REVIEW	LETTERS	7 October 199
Storage of	Nuclear Excitation	Energy th	ough Magneti	c Switching
Yu. V. Shvyd'ko, ¹ T. Hertric ¹ II. Institut fü ² Physik-Depar	h, ² U. van Bürck, ² E. G G. V. Smirnov, ³ W. ir Experimentalphysik, Un timent E15, Technische U ³ RRC, "Kurchatov Institu (Recei	Gerdau, ¹ O. Le Potzel, ² and P <i>niversität Hamb</i> <i>(niversität Müncute", SU-11231</i> ved 8 May 1990	eupold, ¹ J. Metge, ¹ . Schindelmann ² urg, D-22761 Hamb chen, D-85748 Garch 82 Moscow, Russia 6)	H. D. Rüter, ¹ S. Schwendy, ¹ urg, Germany hing, Germany
The decay rate of pulses was controlled nanoseconds after ex restores it, starting w release of the energy from drastic change	⁵⁷ Fe nuclei in an ⁵⁷ Fe l by switching the directing actitation suppresses the with an intense radiation with stored during the perions of the nuclear states	BO_3 crystal ex on of the crysta coherent nuclea spike. The en d of suppressio and of the int	cited by 14.4 keV Il magnetization. A r decay. Switching hanced delayed reer n. Suppression and erference within the	synchrotron radiation brupt switching some g back at later times mission is due to the l restoration originate e nuclear transitions.
HASYLAB F4	beam line	Phy	s. Rev. Let	t. 77, 3232 (1996)

Coherent control of the exciton

Excite the sample

Rotate quantization axis

- Rotate applied magnetic field
- Experiment: 30T in 5ns possible in certain crystals

Deexcitation

- Destructive interference of all pathways possible
- Analogy to electromagnetically induced transparency

 \vec{R}

Exciton storage

Experimental verification:

- Control of coherent NFS possible
- The coherent decay is (almost) fully suppressed after switching
- Revival of coherent decay after switching back
- Primary limitation: incoherent decay with natural lifetime

Yu. V. Shvyd'ko et al., Phys. Rev. Lett. 77, 3232 (1996)

No switching

Apply switching Switch back Decay with natural life

time

X-ray entanglement generation

Single photon entanglement

Single photon impinging on 50/50 beam splitter gives output

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B\right)$$

- The single photon entangles the two field modes A and B - the photon itself is not entangled
- Applications like Bell violation, teleportation etc. have been proposed

Can be converted to other forms, e.g. "regular" entanglement between atoms $|\Psi\rangle = \frac{1}{\sqrt{2}} (|g_1 e_2\rangle + |e_1 g_2\rangle)$

S. J. van Enk, Phys. Rev. A 67, 022303 (2003)

Temporal mode entanglement

Design advanced coherent control scheme:

- Coherently control exciton decay such that single excitation is distributed into three pulses
- Neglecting the background, the two signal pulses are time bin entangled
- Can extract signal from background and convert it to spatial mode entanglement using x-ray optics

A. Palffy, C. H. Keitel, J. Evers, Phys. Rev. Lett. 103, 017401 (2009)

Proof-of-principle experiment

- **Do not extract signal**, use time gating to remove background
- Switching \rightarrow two entangled overlapping pulses with opposite polarization
- Correlation measurement with interferometer, violate Bell-like inequality^{*)}
- Need to eliminate "which-way"-information hidden in polarization
- "loophole": explanation of results also possible by non-local classical theory

*) H.-W. Lee and Kim, Phys. Rev. A 63, 012305 (2000)

Engineering advanced quantum optical level schemes in nuclei

Thin film x-ray cavities

nm-sized thin film cavity

- Cavity resonances give field enhancement
- Nuclear resonances in Fe can interact with cavity field, observable in reflection

reflection

1.0

A single iron layer

Röhlsberger et al, Science 328, 1248 (2010)

Two iron layers

Looks like EIT!

Röhlsberger et al, Nature 482, 199 (2012)

Two iron layers

Röhlsberger et al, Nature 482, 199 (2012)

What would be desirable?

- Broad transparency window to propagate of short input pulses
- Steep dispersion slope for strong effect on propagated pulse
- (time delay)·(transparency bandwidth) is constant
 → need to tune for best trade-off

More general level schemes offer wide range of applications

Example: Strongly enhanced non-linear response

Exploit the hyperfine structure

- So far, operated nuclei as 2-level systems
- Next, apply magnetic field to exploit magnetic hyperfine structure
- Many degrees of freedom: polarization, magnetization

Unexpected spectral signatures

What's this? Only interference can create zeros in overlapping resonances. But can't be EIT – only one layer!

K. P. Heeg, R. Röhlsberger, J. Evers, in preparation

Fundamental light-matter interactions

- Spontaneously generated coherences can be generated by virtual photon exchange involving different states in the same atom
- Desirable consequences, but usually forbidden e.g. by selection rules
- Literally hundreds of theory papers on this topic
- So far only few indirect experimental observations
- Our calculations show that the "zeros" in spectrum are due to SGC

 —> first direct experimental evidence
Quantum optical model

Two-level system

$$\frac{\partial}{\partial t}\rho = -\frac{\gamma}{2} \left(|e\rangle \langle e|\rho + \rho|e\rangle \langle e| - 2|g\rangle \langle e|\rho|e\rangle \langle g| \right)$$

Three-level system

 $\frac{\partial}{\partial t}\rho = -\frac{\gamma}{2} \left(|1\rangle\langle 1|\rho+\rho|1\rangle\langle 1|-2|g\rangle\langle 1|\rho|1\rangle\langle g| \right) \\ -\frac{\gamma}{2} \left(|2\rangle\langle 2|\rho+\rho|2\rangle\langle 2|-2|g\rangle\langle 2|\rho|2\rangle\langle g| \right)$

Quantum optical model

Two-level system

$$\frac{\partial}{\partial t}\rho = -\frac{\gamma}{2} \left(|e\rangle \langle e|\rho + \rho|e\rangle \langle e| - 2|g\rangle \langle e|\rho|e\rangle \langle g| \right)$$

Three-level system with SGC

$$\begin{array}{l} \frac{\partial}{\partial t}\rho = -\frac{\gamma}{2}\left(|1\rangle\langle 1|\rho+\rho|1\rangle\langle 1|-2|g\rangle\langle 1|\rho|1\rangle\langle g|\right) \\ -\frac{\gamma}{2}\left(|2\rangle\langle 2|\rho+\rho|2\rangle\langle 2|-2|g\rangle\langle 2|\rho|2\rangle\langle g|\right) \\ -\frac{\gamma_{\rm C}}{2}\left(|1\rangle\langle 2|\rho+\rho|1\rangle\langle 2|-2|g\rangle\langle 2|\rho|1\rangle\langle g|\right) \\ -\frac{\gamma_{\rm C}}{2}\left(|2\rangle\langle 1|\rho+\rho|2\rangle\langle 1|-2|g\rangle\langle 1|\rho|2\rangle\langle g|\right) \end{array}$$

Quantum optical model

Two-level system

$|e\rangle$ $\left| g \right|$

$$\frac{\partial}{\partial t}\rho = -\frac{\gamma}{2} \left(|e\rangle \langle e|\rho + \rho|e\rangle \langle e| - 2|g\rangle \langle e|\rho|e\rangle \langle g| \right)$$

Three-level system with SGC, diagonalized

S $|g\rangle$

$$\begin{split} \frac{\partial}{\partial t}\rho &= -\frac{\gamma + \gamma_C}{2} \left(|S\rangle \langle S|\rho + \rho |S\rangle \langle S| - 2|g\rangle \langle S|\rho |S\rangle \langle g| \right) \\ &- \frac{\gamma - \gamma_C}{2} \left(|A\rangle \langle A|\rho + \rho |A\rangle \langle A| - 2|g\rangle \langle A|\rho |A\rangle \langle g| \right) \\ &|S\rangle &= \frac{1}{\sqrt{2}} \left(|1\rangle + |2\rangle \right) \qquad \text{constructive interference} \\ &|A\rangle &= \frac{1}{\sqrt{2}} \left(|1\rangle - |2\rangle \right) \qquad \text{destructive interference} \end{split}$$

 $\sqrt{2}$

_ _____ dark line in spectrum

Preliminary results (PETRA III, June 2012)

K. P. Heeg, R. Röhlsberger, J. Evers, in preparation

Why can SGC be observed in nuclei?

Option 1: "Quantum simulator"

In cavity: many-body system which "microscopically" shows no SGC probed from outside appears as single system with SGC

Option 2: "Anisotropic vacuum"

SGC can appear in atoms in anisotropic environments (proposal by G. S. Agarwal) With nuclei, *superradiance* could favor one polarization mode to effectively induce an anisotropy

No decision yet, but both options promision!

K. P. Heeg, R. Röhlsberger, J. Evers, in preparation

X-ray waveguides: Present status

K. P. Heeg, R. Röhlsberger, J. Evers, in preparation

X-ray waveguides: Present status

K. P. Heeg, R. Röhlsberger, J. Evers, in preparation

X-ray waveguides: Present status

promising basis for implementation of advanced quantum optical techniques in hard x-ray range

K. P. Heeg, R. Röhlsberger, J. Evers, in preparation

Outline

Introduction

Nuclear quantum optics

Future perspectives with seeded FELs

Synchrotron radiation vs. seeded FEL beams

	Syn	chrotron	Seeded XFEL		photon hungry	
Bunch separation (n	unch separation (ns) 200ns		200ns (microbunch)		("proven concepts with higher count rate")	
Avg Flux (ph/s/Γ)		5×10^{4}	2×10 ⁸			
Fluence (ph/bunch/I	luence (ph/bunch/Γ)		6×10 ³			
nuclear para (for ⁵⁷ H energy 14. linewidth	ameters Fe) .4 keV 5 neV	XFE 10 ¹² p rel. rep.	L parameters bhotons/pulse BW 6×10 ⁻⁵ rate 30kHz		Short, nonlinear, coherent ("new ideas")	
background	ce round		٦	So far, everything with single photons!		
⊢ Incident ba	andwidth					

Geloni et al, arXiv:1111.5766

Two directions

Temporal coherence

- All quantum optical effects rely on coherence and interference
- Synchrotron experiments operates at the single photon level, and single photons interfere with themselves
- But: strong and coherent driving is key to most quantum optical effects
- Availability of temporally coherent pulse with many resonant photons within nuclear linewidth would enable entirely new possibilities

Can we enter the non-linear regime?

Synchrotron:	$\begin{array}{c} 0.01 \text{ Photons } @ 14.4 \text{keV} \\ 100 \text{ps bunch } \times (\mu\text{m})^2 \times \Gamma \end{array}$	\Rightarrow	$I \sim 10^2 \frac{W}{cm^2}$
Seeded XFEL:	10 ³ Photons @ 14.4keV 10fs bunch × (μm) ² × Γ	⇒	$\rm I \sim 10^{10} \ \frac{W}{cm^2}$

EIT case: Kerr effect

$$n = n_0 + I_P n_2$$
 $\chi = \chi^{(1)} + 3I_P \chi^{(3)}$
 $\chi^{(3)} = 4.3 \times 10^{-22} m^2 / V^2$
 $\Rightarrow n_2 I_P \approx 10^{-7} \text{ for } 10^8 W/cm^2$

nonlinear phase shift ~ linear index achievable with seeded FEL EIT: no linear absorption, strong enhancement via advanced schemes possible

Röhlsberger et al, Nature 482, 199 (2012)

Immediate applications of multiple photons

Separate coupling and probe

- Drive multiple modes simultaneously
- Beams could be individually and mutually temporally coherent

Quantum information and fundamental tests

- QIP protocol with qubit photons and quantum channel photons
- Entangled pairs of photons (downconversion or scheme by Rempe)

State preparation and pumping

- Isomer triggering
- X-ray induced emission with nuclei

A. Pálffy, J. Evers, C. H. Keitel, Phys. Rev. Lett. 99, 172502 (2007)

A. Palffy, C. H. Keitel, and J. Evers, Phys. Rev. B 83, 155103 (2011)

Where could this lead?

Optical analogues of general relativity

- > Interesting effects arise if medium moves faster than speed of light in the medium
- Difficult to move macroscopic objects at speed of light thus make light slow
- Can create optical analogues of event horizons, black holes, Hawking radiation, ...
- Solid state nuclear systems are good candidates:
 - background free measurements
 - fast rotation and motion of nuclear media has already been exploited
 - slow light is likely to occur in existing systems, but not yet verified

U. Leonhardt and T. G. Philbin, Prog. Opt. 53, 69-152 (2009) G. Shenoy and R. Röhlsberger, Hyperf. Int. 182, 157 (2008)

Where could this lead?

Quantum transport

- Designer quantum channels
- Start from a clean system, then add decoherence / dephasing at will
- Model complex bath by perturbing the transport sites independently using laser, E/B field, vibrations, ...
- Does optimal transport require coherence/ decoherence/ entanglement/...?
- What are experimental signatures applicable to complex transport systems?
- How can we control quantum mechanical energy transport to exploit it for applications?
- Need many photons to monitor transport "online"

Other perspectives

Quantum

- Quantum-enhanced measurements,
 e.g. sub-λ resolution, squeezing
- Foundations of quantum mechanics, e.g. entanglement of macroscopic objects

Nonlinear

- Enhanced spectroscopy and measurements
 - Combine different frequencies, e.g. resonant photon + x-ray for high position resolution
- Optomechanics

Control

- Nuclear Rabi flopping
- Enhanced sample preparation, material properties
- Separate signal and background/noise

So far rough ideas only – largely unexplored field

"Wish list"

Exciting possibilities, but

- Resonant driving of Mößbauer nuclei mandatory, ⁵⁷Fe requires 14.4 keV
- X-ray distribution system should be compatible with nuclear resonances
- Many photons per nuclear linewidth to achieve qualitative difference to synchrotrons
- Long pulses / low initial bandwidth favorable for "non-ultrafast" applications (more photons in resonance)
- Temporally coherent single or mutually coherent double pulses desirable for advanced quantum optical schemes

The team

Martin Gärttner Qurrat-ul-Ain Gulfam Kilian Heeg Mihai Macovei Adriana Pálffy Andreas Reichegger Lida Zhang

Collaboration (DESY)

Ralf Röhlsberger Hans Christian Wille Kai Schlage

Funding: MPG, DFG, DAAD, IMPRS-QD, CQD

MPIK Heidelberg

Summary

X-ray entanglement

Quantum transport

Thank you!

Possible proof-of-principle experiment

Without phase shifts: All N photons go to C (G_N)

With phase shift by Alice: $N_A = \sin^2(\phi_A/2) N$ photons go to D (G_A)

With phase shift by Bob: $N_B = \sin^2(\phi_B/2) N$ photons go to D (G_B)

With both phase shifts: $N_{AB} = \sin^2[(\phi_A - \phi_B)/2] N$ go to D (G_{AB})

► Locality assumption: photons which arrive at C both if (Alice shifts but not Bob) and if (Bob shifts but not Alice) will still arrive at C if (Alice and Bob shift) $(G_N - G_A) \cap (G_N - G_B) \subseteq (G_N - G_{AB})$

 $N_{AB} \leq N_A + N_B$ violated for some phase shifts

H.-W. Lee and Kim, Phys. Rev. A 63, 012305 (2000)

Experimental evidence with local oscillator

single photon generation

B. Hessmo et al, Phys. Rev. Lett. 92, 180401 (2004)

Single photon entanglement teleportation scheme

H.-W. Lee and Kim, Phys. Rev. A 63, 012305 (2000)

Teleportation algebra

measurement Alice

H.-W. Lee and Kim, Phys. Rev. A 63, 012305 (2000)

Efficiency estimate

- Assumed rate of excited nuclei: ~ 10^6 / s
- Of stored excitation, 70% background, 30% signal
- Loss at polarizer: Only about 10% of photons are kept
- Single photon entanglement rate: ~ 10^3 / s

Signal and background separated!

Incident photon flux can be increased until multiple excitations occur

A. Palffy, C. H. Keitel, J. Evers, Phys. Rev. Lett. 103, 017401 (2009)

Theoretical description

Wave equation

$$\left(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{4\pi}{c} \frac{\partial}{\partial t} \vec{I}$$

Slowly varying envelope approximation

$$\frac{\partial}{\partial z}\vec{\mathcal{E}} = -\frac{2\pi}{c}\vec{\mathcal{I}}$$

Nuclei as source term (2nd order)

$$\vec{I} = \operatorname{Tr}\left(\vec{j}\rho_{\mathrm{nuclei}}\right)$$

Final wave equation

$$\frac{\partial \vec{\mathcal{E}}(z,t)}{\partial z} = -\sum_{\ell} K_{\ell} \vec{J}_{\ell}(t) \int_{-\infty}^{t} d\tau \vec{J}_{\ell}^{\dagger}(\tau) \cdot \vec{\mathcal{E}}(z,\tau)$$
sum over de-excitation excitation transitions

Iterative solution, incident pulse $\mathcal{E}^{(0)} \sim \delta(t)$

Y. V. Shvydko, Hyperf. Int. 123/124, 275 (1999)

Recent experiment: Collective Lamb Shift

- Lamb shift due to virtual photon exchange in ensembles of atoms
- Experimentally observed with nuclei using forward scattering
- Experimental challenge: Prepare purely superradiant state in thick sample; solution: embed nuclei in low-q cavity

Röhlsberger et al, Science 328, 1248 (2010)

Motivation

Light-matter interactions

- optical driving fields: excite/ionize outer electrons
- Higher frequencies/intensities: excite / ionize core electrons
- Even higher frequencies/intensities: excite nucleus

These scenarios appear similar

But the methods and applications are quite different

Step 5: Releasing linear polarization

- Initially, magnetic field is in z direction
- At time t₁, cancel decay by rotating into y direction
- At time t_2 , enable decay on $\Delta m = \pm 1$ but continue to suppress $\Delta m = 0$
- At time t₃, cancel decay by rotating into y direction
- At time t_4 , enable decay on $\Delta m = 0$

Advanced magnetic switching schemes

Rotation angle

Determines new quantization axis and superposition states

Timing

Important due to different transition energies

Determine whether constructive/destructive interference occurs

Example: Suppression at t_1 , how does t_2 affect further evolution?

A. Palffy and J. Evers, J. Mod. Opt. 57, 1993 (2010)

Step 1: Synchrotron excitation

Initially, magnetic field is in z direction

Step 2: Canceling coherent decay

- Initially, magnetic field is in z direction
- At time t₁, cancel decay by rotating into y direction

Step 3: Releasing circular polarization

At time t₁, cancel decay by rotating into y direction

At time t_2 , enable decay on $\Delta m = \pm 1$ but continue to suppress

 $\Delta m = 0$

Step 4: Canceling coherent decay

- Initially, magnetic field is in z direction
- At time t₁, cancel decay by rotating into y direction
- At time t_2 , enable decay on $\Delta m = \pm 1$ but continue to suppress $\Delta m = 0$
- At time t₃, cancel decay by rotating into y direction

Engineering multi-level schemes

How to implement EIT in x-ray cavity?

Next talk

How can one

- Control and systematically study EIT without building many cavities?
- Engineer more complex level schemes?

Poster by Kilian Heeg

Image and setup: Röhlsberger et al, Nature (2012)

Coherent forward scattering

 $e^{i(\vec{k}-\vec{k}_L)\vec{r}_i} \sim \delta(\vec{k}-\vec{k}_L)$ $\lim_{N\to\infty}$

- Coherent scattering occurs in forward direction
- Similarity to multi-slit / grid diffraction but constructive interference only in forward / Bragg direction

grid = CD-R grooves
Cooperative light scattering

 $ec{k}_L$ scattered light

quantum particles as scatterers

How to extract signal pulse ?

- Problem: One part of signal has same polarization as background pulse
- Time gating not useful if following setup should be protected from high-intensity background; lighthouse effect difficult because of precise timing of nuclear switching
- PSM: Piezo electric steering mirror or sub-ns control device based on crystal lattice deformation¹⁾
- Have about 180 ns "steering time" because of magnetic switching

1) A. Grigoriev et al., Appl. Phys. Lett. 89, 021109 (2006)

Branching ratio

Single particle branching ratio:

- Determines ratio of spontaneous emission channels
- Property of the particle only

Branching ratio in ensembles

- Have cooperative modification of excitation and decay
- Determined by particle, ensemble and excitation properties, varies with time
- Need to define cooperative branching ratio

Motivation

- Aim: Efficiently pump from ground state $|G\rangle$ to isomeric state $|I\rangle$
- Cooperativity leads to enhanced excitation to $|E\rangle$, but also to fast decay
- ln effect, little transfer to $|I\rangle$

Idea:

- Then cooperativity leads to enhanced excitation, but decay proceeds with single particle branching ratio
- ln effect, enhanced pumping to $|I\rangle$

A. Palffy, C. H. Keitel, and J. Evers, Phys. Rev. B 83, 155103 (2011)

The ideal case

- Assume purely superradiant decay with rate ξ · γ
- Assume perfect coherent control of cooperative decay

Result:

$$b_c^C/b_c^{NC} = \xi + 1$$

Cooperative branching ratio is larger by factor $\xi+1$

In addition, cooperative enhancement of excitation

Magnetic switching:

- Turn off cooperative decay via interference
- The incoherent decay with single-particle branching ratio remains

Destroy phase coherence:

- Use short pulse of incoherent light, spatially inhomogeneous magnetic field, or similar to destroy spatial coherence
- Without the coherence, uncorrelated decay without cooperative enhancement
- Can be done immediately after excitation, does not require sophisticated pulse control

The magnetic switching case

- Branching ratio time dependent as expected
- Cooperative branching ratio smaller than single-particle ratio due to superradiance
- After switching, single-particle branching ratio is achieved
- With destruction of phase coherence, single-particle ratio can immediately be achieved

A. Palffy, C. H. Keitel, and J. Evers, Phys. Rev. B 83, 155103 (2011)

Outline

Introduction

X-ray entanglement generation

X-ray branching ratio control

Outlook: Engineering advanced level schemes

Outline

Introduction

X-ray entanglement generation

X-ray branching ratio control

Outlook: Engineering advanced level schemes

Outline

Introduction

X-ray entanglement generation

X-ray branching ratio control

Outlook: Engineering advanced level schemes

X-ray and $\gamma\text{-ray}$ quantum optics @ MPIK

Low-energy condensed matter excitations

Polarizer/Analyzer blocks all light

- Only exception: polarization-rotating scattering via iron nuclei
- This process is restricted to narrow linewidth of iron (few neV)
- Tunable via Doppler shift due to mirror rotation
- Method was shown to work, but not enough signal from synchrotron sources for inelastic scattering

Röhlsberger et al, Nucl. Instrum. Methods A 394, 251 (1997)

Motivation

Low-energy condensed matter excitations

Spectroscopy with µeV bandwidth tunable over ~meV scale

Advantage of x-rays: very high energy and angular resolution reach more parts of phase space due to high brilliance smaller samples accessible

XFEL could make this feasible for inelastic scattering

Röhlsberger et al, Nucl. Instrum. Methods A 394, 251 (1997)

Layer formalism

• How to calculate R?

field amplitude:

$$A(z) = \begin{pmatrix} A_{in}(z) \\ A_{out}(z) \end{pmatrix}$$

$$A_{\rm in}(0) \qquad \qquad A_{\rm in}(D) = 0$$
$$A_{\rm out}(0) \qquad \qquad A_{\rm out}(D) = 0$$

propagation equation:

$$\frac{d}{dz} \mathbf{A} = i \mathbf{F} \mathbf{A}$$
scattering amplitudes

$$f_N \sim \frac{1}{\hbar\omega - E + i\gamma/2}$$

reflectivity:
$$R = \frac{A_{\text{out}}(0)}{A_{\text{in}}(0)}$$

Probing fast dynamics at the nanoscale

- Scattering is characterized by the scattering function S transition rate $R \sim \left| S(\vec{Q}, \omega) \right|^2$
- Measurements in energy domain not favorable if - scattering medium changes with time (diffusion, molecular motion, short-lived quasiparticles, ...)
 - strong interaction leads to broadening of resonances

Then it is favorable to measure in time domain:

$$S(\vec{Q},t) = \int S(\vec{Q},\omega) \ e^{i\omega t} \ d\omega$$

 \vec{k}_{in} \vec{k}_{out} $\vec{Q} = \vec{k}_{out} - \vec{k}_{in}$

$$\omega = \omega_{out} - \omega_{in}$$

- Need high Q and t range, large signal/noise ratio
- Example application: correlated electron materials

A. Q. R. Baron et al, Phys. Rev. Lett. 79, 2823 (1997); SwissFEL Science Case

Scattering function in the time domain

