$SMH \rightarrow TT search with ATLAS$ Thomas Schwindt

Helmholtz Alliance

Studienstiftung des deutschen Volkes

based on 4.6 + 13 fb⁻¹ of data collected in 2011-2012, documented in ATLAS-CONF-2012-160

Motivation: $H \rightarrow TT$

- H→TT has one of the largest branching fractions for low masses, also for discovered Higgs-like resonance (m_H=126 GeV)
- However, still need to confirm its Yukawa couplings, giving masses to fermions (only indirectly via loops so far?)

- In SM three main production channels:
 - gluon-fusion (ggH), qqH (VBF), associated (VH)
 - can exploit specific jet topologies in analysis

$H \rightarrow TT$ final states

- T-leptons subsequently decay into e/μ or T_{had}
- mainly distinguish 3 final states: T_{lep}T_{lep}, T_{lep}T_{had}, T_{had}T_{had}
 - different background composition due to isolated leptons
 - important ingredient: separation of "T-jets" from QCD-jets
- TauID efficiency ~50%, QCD-jet mis-identification < 1%
 - seeded with default anti- k_T (d=0.4) jets, tracks in dR \leq 0.2
 - separation with BDT based on several pile-up robust variables
 - shower shape, isolation, angular separation, track radius/mass

Mass reconstruction

- Invariant mass to be reconstructed from E_T^{miss}
- **MMC**: Missing Mass Calculator
 - $\Delta \theta_{3D}(\tau_{vis}, U)$ from simulation \rightarrow weights in $\Delta \phi(\tau_{vis}, U)$
 - most probable value as the MMC mass estimator
 - A. Elagin et al., NIM A654 (2011), 481-489, arXiv:1012.4686
- Mass resolution dominated by resolution of E^{miss}
 - improves with boost of di-T-resonance

Δ

Candidate Event: $(qq)H \rightarrow TT \rightarrow \mu T_{had}$ ATLAS Run Number: 204265, Event Number: 178165311 EXPERIMENT Date: 2012-06-02 19:53:30 CEST $p_T^{\tau_{\text{had-vis}}} = 96 \,\text{GeV}$ $p_T^{\mu} = 63 \,\mathrm{GeV}$ $E_T^{\text{miss}} = 119 \,\text{GeV}$ $m_{jj} = 625 \,\mathrm{GeV}$ $m_{\rm MMC} = 129\,{\rm GeV}$

Background estimation (leptonic)

- Multi-jet and W+jets (with mis-identified objects)
 - Leptons (fakes) from jets estimated from template fit to non-isolated data
 - Hadronic T-decays from data with same-sign charge (OS-SS from simulation)
- Z→ee/µµ (+jets), top, di-boson from simulation, corrections to data from dedicated control regions
- $Z \rightarrow \tau \tau$ from $Z \rightarrow \mu \mu$ data, where muons are replaced by τ -decays: "embedding"
 - cannot be estimated from signal-free data control region by construction
 - signal sitting on the right flank of the Z peak important to be data driven

Background estimation (hadronic)

- $Z \rightarrow \tau \tau$ from embedding of $Z \rightarrow \mu \mu$ data
- Multi-jet from data with same-sign charge
- normalization from fit of 2-dimensional track template to data in control region

7 6 5 4 32 (leading r hai

Estimation of $Z \rightarrow \tau \tau$ Background

Important shape of $Z \rightarrow \tau \tau$ from $Z \rightarrow \mu \mu$ data: "**Embedding**"

- remove muon tracks and simulated calorimeter energy from data
- replace by full-sim $Z \rightarrow \tau \tau$ decays, generated with Tauola
- re-run full event reconstruction: pile-up, jets and ET^{miss} from data
- validation with $\mu \rightarrow \mu$ embedding (data to data) and Alpgen MC

8

Results: VBF category

- Most sensitive category in all three channels exploit production mechanism
 - limited statistics for background estimates, low signal expectation, but best S/B of all analysis categories
 - in lep-had, use VBF-filtered simulation for $Z \rightarrow \tau \tau$, with corrections derived from $Z \rightarrow \mu \mu$ data systematics lower than from limited embedding statistics

Results: Boosted category (ggF)

- In total 2nd most sensitive category in all three channels best for ggH production
 - high p_T of Z/H (or additional jet as recoil) significantly improves mass resolution and S/B separation
- Additional categories (0/Ijet) for lep-had and VH for lep-lep included in limit calculation, but overall sensitivity dominated by VBF and "Boosted"

Analysis Categorization

- VBF categories: large di-jet mass and separation in η
 - VH category: small di-jet mass and separation in η
- **Boosted** categories: high p_T of di-T-resonance or recoiling jet
- Other categories: additional sensitivity from 0/1 jet selection

Systematic uncertainties

- Dominant systematics from Jet/Tau Energy Scale, and embedding uncertainties
 - no JES and less MET systematics for embedding, but TES still from simulation, additional uncertainties from method variation (muon isolation, cell subtraction)
- Since these significantly affect the mass shapes, included as shape systematics

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$
		$Z \to \tau^+ \tau^-$	
Embedding	1–4% (S)	2–4% (S)	1–4% (S)
Tau Energy Scale	—	4–15% (S)	3–8% (S)
Tau Identification	—	4–5%	1–2%
Trigger Efficiency	2–4%	2–5%	2–4%
Normalisation	5%	4% (non-VBF), 16% (VBF)	9–10%
		Signal	
Jet Energy Scale	1–5% (S)	3–9% (S)	2–4% (S)
Tau Energy Scale	—	2–9% (S)	4–6% (S)
Tau Identification	—	4–5%	10%
Theory	8–28%	18–23%	3–20%
Trigger Efficiency	small	small	5%

Limits - Improvements for 7 TeV

- Improvements in analysis shown for 7 TeV 2011 data only
 - mainly including boosted category, further optimizing VBF selection
- large improvement from 4xSM to 2xSM with the same dataset

Combined Limits and po-Value

- Statistical analysis using profile likelihood from MMC distributions
 - expect exclusion limit (μ =0) of 1.2xSM, but observe only 1.9xSM
 - expect local significance (μ =1) of 1.7xSM, but observe only 1.1xSM
 - observed excess is smaller than expected from a SM Higgs (m_H=126 GeV)

Production Processes?

- Observed excess dominated by non-VBF categories
 - observe less data than expected from SM Higgs in VBF
 - best fitted signal strength favours ggF, but a lower contribution from VBF production than expected

Summary

- Combined analysis of 4.6 fb⁻¹ (@ 7 TeV) and 13 fb⁻¹
 (@ 8 TeV) data in three final states
 - Improvements in analysis yield ~50% better sensitivity compared to last result
- Only starting to become sensitive to a SM Higgs confirmation of fermion couplings still needs more data
 - 95% CL exclusion (μ=0): 1.2 (1.9) x SM exp. (obs.)
 - local p₀ value (µ=1): 1.7 (1.1) x SM exp. (obs.)
- Observed data still consistent with either background only or signal, couplings not yet conclusive:
 - signal strength (μ_{best}): 0.7 ± 0.7
 - $\mu^{ggF}_{best} = 2.4$, $\mu^{VBF+VH}_{best} = -0.4$

Limits per Channel

- Expected sensitivities comparable between channels
- Excess in observed limit dominated by lep-lep channel
 - (close to) no excess observed in lep-had and had-had

Candidate Event: $(qq)H \rightarrow TT \rightarrow e\mu$

Run Number: 209381, Event Number: 72873013 Date: 2012-08-28 04:17:16 CEST

Candidate Event: $(qq)H \rightarrow TT \rightarrow T_{had}T_{had}$

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

Trigger Thresholds in 7 | 8 TeV

Channel	Trigger	Trigger $p_{\rm T}$ Threshold (GeV)	Offline $p_{\rm T}$ Threshold (GeV)			
		7 TeV			8 TeV	
$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	single electron	$p_{\rm T}^{\ e} > 20 - 22$	electron p_T 2 GeV above trigger threshold	single electron	$p_{\rm T}^{\ e} > 24$	$p_{\rm T}^{\ e} > 25$ $p_{\rm T}^{\ \mu} > 10$
			$p_{\rm T}^{\mu} > 10$	di-electron	$p_{\rm T} {}^{e1} > 12$	$p_{\rm T}^{e_{\rm T}} > 15$
	single muon	$p_{\rm T}{}^{\mu} > 18$	$p_{\rm T}r > 20$ $p_{\rm T}e > 15$		$p_{\rm T}^{e_2} > 12$	$p_{\rm T}^{e_2} > 15$
	di-electron	$p_{\rm T} {}^{el} > 12$	$p_{\rm T}^{el} > 15$	di-muon	$p_{\rm T}^{\mu 2} > 18$ $p_{\rm T}^{\mu 2} > 8$	$p_{\rm T}$ $p_{\rm T}$ $p_{\rm T}$ $p_{\rm T}$ $\mu^2 > 10$
		$p_{\rm T}^{c2} > 12$ $p_{\rm T}^{\mu 1} > 15$	$\frac{p_{\rm T}^{\nu 2} > 15}{p_{\rm T}^{\mu 1} > 16}$	$e - \mu$ combined	$p_{\rm T} ^{e} > 12$	$p_{\rm T}^{\ e} > 15$
	di-muon	$p_{\rm T}^{\ \mu 2} > 10$	$p_{\rm T}^{\ \mu 2} > 10$	single electron	$\frac{p_{\rm T}r > 8}{p_{\rm T}e > 24}$	$\frac{p_{\rm T}r}{p_{\rm T}e} > 10$
	$e - \mu$ combined	$p_{\rm T}^{\ e} > 10$ $p_{\rm T}^{\ \mu} > 6$	$p_{\rm T}^{\ e} > 15$ $p_{\rm T}^{\ \mu} > 10$	single election		$p_{\rm T} \rightarrow 20$ $p_{\rm T} \tau_{\rm had-vis} > 20$
$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	single electron	$p_{\rm T}^{\ e} > 20 - 22$	$p_{\rm T}^{\ e} > 25$	single muon	$p_{\rm T}{}^{\mu} > 24$	$p_{\rm T}^{\mu} > 26$
			$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 20$	combined a 1 7	-	$\frac{p_{\rm T} \cdot \text{mau-vis} > 20}{20 < n - e < 26}$
	single muon	$p_{\rm T}^{\mu} > 18$	$p_{\mathrm{T}}^{\ \mu} > 25$ $p_{\mathrm{T}}^{\ \tau_{\mathrm{had-vis}}} > 20$	combined $e + t_{had-vis}$	$p_{\rm T} > 18$ $p_{\rm T}^{\tau_{\rm had-vis}} > 20$	$\frac{20 < p_{\rm T}}{p_{\rm T}} < 20$
	combined $e + \tau_{had-vis}$	$p_{\rm T}^{\ e} > 15$	$17 < p_{\rm T}^{\ e} < 25$	combined $\mu + \tau_{had-vis}$	$p_{\rm T}^{\ \mu} > 15$	$17 < p_{\rm T}^{\ \mu} < 26$
		$p_{\rm T} ^{\tau_{\rm had-vis}} > 16 - 20$	$p_{\rm T}^{\tau_{\rm had-vis}} > 25$		$p_{\mathrm{T}} {}^{\tau_{\mathrm{had-vis}}} > 20$	$p_{\rm T} \tau_{\rm had-vis} > 25$
$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	combined two $ au_{had}$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 29$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 40$	combined two τ_{had}	$p_{\rm T}$ $\tau_{\rm had-vis}$ > 29	$p_{\rm T}^{\tau_{\rm had-vis}} > 40$
		$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 20$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 25$		$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 20$	$p_{\rm T} \tau_{\rm had-vis} > 25$

- Few changes in trigger configuration due to higher luminosity
- offline p_T -thresholds for $e/\mu/T_{had}$ changed accordingly

Categorization (lep-lep)

2-jet VBF	Boosted	2-jet VH	1-jet		
Pre-	Pre-selection: exactly two leptons with opposite charges				
30	$\mathrm{GeV} < m_{\ell\ell} < 75 \; \mathrm{GeV} \; ($	$30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$			
for same-fi	avor (different-flavor) le	eptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$	5 GeV		
At least	one jet with $p_T > 40 \text{ G}$	$eV (JVF_{jet} > 0.5 \text{ if } \eta_{jet} < 2$	2.4)		
$E_{\rm T}^{\rm miss} > 40 {\rm Ge}$	$eV (E_{\rm T}^{\rm miss} > 20 \text{ GeV})$ for	r same-flavor (different-flavo	r) leptons		
	$H_{\rm T}^{\rm miss}$ > 40 GeV for	same-flavor leptons			
	0.1 < 2	$x_{1,2} < 1$			
	$0.5 < \Delta q$	$\phi_{\ell\ell} < 2.5$			
$n_{\pi} \sim 25 \text{ GeV} (\text{IVF})$	excluding 2-jet VBF	$n_{\pi} \sim 25 \text{ GeV}$ (IVF)	excluding 2-jet VBF,		
$p_{T,j2} > 25 \text{ GeV (J VT)}$	excluding 2-jet VDI	$p_{T,j2} > 25 \text{ GeV} (J \text{ V} T)$	Boosted and 2-jet VH		
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 \text{ GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$		
$m_{jj} > 400 \text{ GeV}$	<i>b</i> -tagged jet veto	$\Delta \eta_{jj} < 2.0$	<i>b</i> -tagged jet veto		
<i>b</i> -tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$			
Lepton centrality and CJV		<i>b</i> -tagged jet veto			
	0-jet (7 7	TeV only)			
Pre-selection: exactly two leptons with opposite charges					
Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV					
$\Delta \phi_{\ell\ell} > 2.5$					
	<i>b</i> -tagged	l jet veto			

Event Yields (lep-lep)

7 TeV (4.6 fb⁻¹)

			$ee + \mu\mu + e\mu$		
	VBF category	Boosted category	VH category	1-jet category	0-jet category
$gg \rightarrow H (125 \text{ GeV})$	$0.20 \pm 0.04 \pm 0.07$	$3.5 \pm 0.2 \pm 0.4$	$0.4 \pm 0.1 \pm 0.1$	$2.0 \pm 0.1 \pm 0.8$	25±1±4
VBF <i>H</i> (125 GeV)	$1.05 \pm 0.03 \pm 0.10$	$0.90 \pm 0.03 \pm 0.05$	$0.05 \pm 0.01 \pm 0.01$	$0.56 \pm 0.02 \pm 0.01$	$0.97 \pm 0.03 \pm 0.06$
VH (125 GeV)	0.0	$0.71 \pm 0.03 \pm 0.09$	$0.20 \pm 0.01 \pm 0.02$	$0.14 \pm 0.01 \pm 0.02$	$0.63 \pm 0.02 \pm 0.04$
$Z/\gamma^* \to \tau \tau$ embedded	$20 \pm 2 \pm 2$	$(0.41 \pm 0.01 \pm 0.02) \times 10^3$	$113 \pm 5 \pm 8$	$272 \pm 8 \pm 41$	$(10.71 \pm 0.05 \pm 0.07) \times 10^3$
$Z/\gamma^* ightarrow \ell\ell$	$1.5 \pm 0.6 \pm 0.6$	$77 \pm 7 \pm 6$	$27 \pm 4 \pm 9$	$45 \pm 5 \pm 24$	$(0.17 \pm 0.01 \pm 0.01) \times 10^3$
Тор	$4.8 \pm 0.5 \pm 0.6$	$132 \pm 3 \pm 6$	$27 \pm 1 \pm 6$	$31 \pm 2 \pm 10$	$284 \pm 4 \pm 15$
Diboson	$0.8\pm0.1\pm0.2$	$17.4 \pm 0.7 \pm 0.6$	$4.3 \pm 0.4 \pm 1.0$	$12 \pm 1 \pm 3$	$347 \pm 3 \pm 20$
Backgrounds with fake leptons	$2.7 \pm 0.3 \pm 0.9$	$22 \pm 3 \pm 4$	$19 \pm 3 \pm 6$	$24 \pm 3 \pm 10$	$(1.56 \pm 0.02 \pm 0.40) \times 10^3$
Total background	$29 \pm 3 \pm 2$	$(0.66 \pm 0.01 \pm 0.02) \times 10^3$	$190 \pm 7 \pm 15$	$(0.38 \pm 0.01 \pm 0.05) \times 10^3$	$(13.07 \pm 0.06 \pm 0.41) \times 10^3$
Observed data	28	673	176	371	13214

8TeV (13.0 fb⁻¹)

		$ee + \mu\mu + e\mu$		
	VBF category	Boosted category	VH category	1-jet category
$gg \rightarrow H (125 \text{ GeV})$	$1.3 \pm 0.2 \pm 0.4$	$12.4 \pm 0.6 \pm 2.9$	$2.5 \pm 0.3 \pm 0.6$	$7.0 \pm 0.5 \pm 1.6$
VBF <i>H</i> (125 GeV)	$3.63 \pm 0.10 \pm 0.02$	$3.36 \pm 0.09 \pm 0.30$	$0.21 \pm 0.03 \pm 0.02$	$1.82 \pm 0.07 \pm 0.18$
VH (125 GeV)	$0.01 \pm 0.01 \pm 0.01$	$2.20 \pm 0.05 \pm 0.22$	$0.64 \pm 0.03 \pm 0.09$	$0.44 \pm 0.02 \pm 0.05$
$Z/\gamma^* \to \tau \tau$ embedded	$47 \pm 2 \pm 1$	$(1.24 \pm 0.01 \pm 0.08) \times 10^3$	$393 \pm 7 \pm 26$	$(0.86 \pm 0.01 \pm 0.06) \times 10^3$
$Z/\gamma^* o \ell\ell$	$14 \pm 3 \pm 2$	$(0.21 \pm 0.02 \pm 0.04) \times 10^3$	$(0.08 \pm 0.01 \pm 0.02) \times 10^3$	$(0.16 \pm 0.01 \pm 0.03) \times 10^3$
Тор	$15 \pm 2 \pm 3$	$(0.39 \pm 0.01 \pm 0.07) \times 10^3$	$87 \pm 4 \pm 23$	$117 \pm 5 \pm 18$
Diboson	$3.6\pm0.8\pm0.6$	$55 \pm 3 \pm 10$	$15 \pm 1 \pm 4$	$40 \pm 3 \pm 7$
Backgrounds with fake leptons	$12 \pm 2 \pm 3$	$102 \pm 7 \pm 23$	$86 \pm 4 \pm 16$	$230 \pm 8 \pm 52$
Total background	$91 \pm 5 \pm 5$	$(2.01 \pm 0.03 \pm 0.12) \times 10^3$	$(0.66 \pm 0.02 \pm 0.05) \times 10^3$	$(1.40 \pm 0.02 \pm 0.08) \times 10^3$
Observed data	98	2014	636	1405

Event Yields (lep-had, 0/ljet)

-	eThad	7 TeV ((4.6 fb ⁻¹)	μT_{had}	
Process	Eve	ents	Process	Eve	ents
	0-Jet	1-Jet		0-Jet	1-Jet
$gg \rightarrow H (125 \text{ GeV})$	$9.4 \pm 0.3 \pm 2.3$	$8.7 \pm 0.2 \pm 1.8$	$gg \rightarrow H (125 \text{ GeV})$	$4.6 \pm 0.2 \pm 1.2$	$6.4 \pm 0.2 \pm 1.3$
VBF <i>H</i> (125 GeV)	$0.09 \pm 0.01 \pm 0.01$	$1.68 \pm 0.03 \pm 0.15$	VBF <i>H</i> (125 GeV)	$0.04 \pm 0.00 \pm 0.01$	$1.35 \pm 0.03 \pm 0.12$
VH (125 GeV)	$0.05 \pm 0.01 \pm 0.01$	$0.73 \pm 0.04 \pm 0.07$	VH (125 GeV)	$0.03 \pm 0.01 \pm 0.00$	$0.67 \pm 0.04 \pm 0.06$
$Z/\gamma^* \to \tau \tau$ embedded (OS-SS)	$(2.57 \pm 0.03 \pm 0.44) \times 10^3$	$(1.63 \pm 0.02 \pm 0.24) \times 10^3$	$Z/\gamma^* \to \tau \tau$ embedded (OS-SS)	$(0.88 \pm 0.01 \pm 0.17) \times 10^3$	$(1.20 \pm 0.02 \pm 0.17) \times 10^3$
Diboson (OS-SS)	$2.1 \pm 0.6 \pm 0.3$	$12.2 \pm 1.3 \pm 1.1$	Diboson (OS-SS)	$2.3 \pm 0.3 \pm 0.4$	$9.1 \pm 1.2 \pm 0.8$
$Z/\gamma^* \to \ell\ell (\text{OS-SS})$	$47 \pm 5 \pm 12$	$34 \pm 5 \pm 8$	$Z/\gamma^* \to \ell\ell (\text{OS-SS})$	$10 \pm 3 \pm 2$	$13 \pm 3 \pm 4$
Top (OS-SS)	$0.7 \pm 0.2 \pm 0.2$	$121 \pm 3 \pm 19$	Top (OS-SS)	$0.5 \pm 0.2 \pm 0.1$	$92 \pm 3 \pm 14$
W boson + jets (OS-SS)	$116 \pm 15 \pm 6$	$(0.24 \pm 0.02 \pm 0.03) \times 10^3$	W boson + jets (OS-SS)	$65 \pm 11 \pm 6$	$(0.15 \pm 0.02 \pm 0.02) \times 10^3$
Same sign data	$(0.40 \pm 0.02 \pm 0.06) \times 10^3$	$(0.82 \pm 0.04 \pm 0.04) \times 10^3$	Same sign data	$60 \pm 8 \pm 3$	$(0.31 \pm 0.02 \pm 0.02)) \times 10^3$
Total background	$(3.13 \pm 0.04 \pm 0.44) \times 10^3$	$(2.85 \pm 0.04 \pm 0.25) \times 10^3$	Total background	$(1.01 \pm 0.02 \pm 0.17) \times 10^3$	$(1.78 \pm 0.03 \pm 0.18) \times 10^3$
Observed data	3064	2828	Observed data	958	1701

eT_{had} 8 TeV (13.0 fb⁻¹)

				_	
Process	Eve	nts	Process	Events	
	0-Jet	1-Jet		0-Jet	1-Jet
$gg \rightarrow H (125 \text{ GeV})$	$25.9 \pm 0.8 \pm 6.1$	$37.3 \pm 0.9 \pm 8.4$	$gg \rightarrow H (125 \text{ GeV})$	$34.3 \pm 0.9 \pm 8.0$	$46 \pm 1 \pm 11$
VBF <i>H</i> (125 GeV)	$0.30 \pm 0.05 \pm 0.04$	$7.8 \pm 0.3 \pm 0.5$	VBF <i>H</i> (125 GeV)	$0.47 \pm 0.06 \pm 0.04$	$8.5 \pm 0.3 \pm 0.6$
VH (125 GeV)	$0.27 \pm 0.05 \pm 0.03$	$3.5 \pm 0.2 \pm 0.2$	VH (125 GeV)	$0.20 \pm 0.05 \pm 0.02$	$3.7 \pm 0.2 \pm 0.3$
$Z/\gamma^* \to \tau \tau (\text{OS-SS})$	$(3.59 \pm 0.03 \pm 0.278) \times 10^3$	$(4.50 \pm 0.04 \pm 0.37) \times 10^3$	$Z/\gamma^* \to \tau \tau (\text{OS-SS})$	$(7.13 \pm 0.04 \pm 0.48) \times 10^3$	$(6.14 \pm 0.04 \pm 0.45) \times 10^3$
Diboson (OS-SS)	$9.9 \pm 0.7 \pm 0.9$	$27 \pm 1 \pm 2$	Diboson (OS-SS)	$10.5 \pm 0.7 \pm 0.9$	$30 \pm 1 \pm 3$
$Z/\gamma^* \to \ell\ell (\text{OS-SS})$	$(0.41 \pm 0.04 \pm 0.13) \times 10^3$	$(0.28 \pm 0.07 \pm 0.14) \times 10^3$	$Z/\gamma^* \to \ell\ell (\text{OS-SS})$	$(0.10 \pm 0.02 \pm 0.02) \times 10^3$	$(0.12 \pm 0.02 \pm 0.03) \times 10^3$
Top (OS-SS)	$8 \pm 2 \pm 1$	$(1.00 \pm 0.02 \pm 0.03) \times 10^3$	Top (OS-SS)	$10.4 \pm 2.3 \pm 0.6$	$(1.03 \pm 0.03 \pm 0.05) \times 10^3$
W boson + jets (OS-SS)	$(0.48 \pm 0.07 \pm 0.04) \times 10^3$	$(1.32 \pm 0.12 \pm 0.12) \times 10^3$	W boson + jets (OS-SS)	$(0.51 \pm 0.09 \pm 0.04) \times 10^3$	$(1.0 \pm 0.1 \pm 0.14) \times 10^3$
Same sign data	$(0.66 \pm 0.03 \pm 0.03) \times 10^3$	$(3.68 \pm 0.06 \pm 0.18) \times 10^3$	Same sign data	$(1.03 \pm 0.03 \pm 0.07) \times 10^3$	$(3.27 \pm 0.06 \pm 0.24) \times 10^3$
Total background	$(5.16 \pm 0.09 \pm 0.31) \times 10^3$	$(10.8 \pm 0.2 \pm 0.5) \times 10^3$	Total background	$(8.8 \pm 0.1 \pm 0.5) \times 10^3$	$(11.6 \pm 0.1 \pm 0.5) \times 10^3$
Observed data	5012	10409	Observed data	8300	11373

 μT_{had}

7 TeV (4.6 fb⁻¹)

8TeV (13.0 fb⁻¹)

Process	Event	ts
	Boosted	VBF
$gg \rightarrow H (125 \text{ GeV})$	$4.1 \pm 0.1 \pm 1.0$	$0.17 \pm 0.03 \pm 0.06$
VBF <i>H</i> (125 GeV)	$1.52 \pm 0.03 \pm 0.13$	$0.87 \pm 0.02 \pm 0.15$
VH (125 GeV)	$0.86 \pm 0.04 \pm 0.08$	< 0.001
$Z/\gamma^* o au au^\dagger$	$(0.70 \pm 0.02 \pm 0.10) \times 10^3$	$6.5 \pm 0.6 \pm 1.5$
Diboson [†]	$8.4 \pm 0.7 \pm 0.8$	$0.12 \pm 0.06 \pm 0.03$
$Z/\gamma^* o \ell \ell^{\dagger}$	$3.7 \pm 1.3 \pm 1.0$	$0.8 \pm 0.3 \pm 1.0$
Top [†]	$52 \pm 2 \pm 9$	$1.2 \pm 0.3 \pm 0.1$
W boson + jets (OS-SS)	$41 \pm 7 \pm 8$	_
Same sign data	$90 \pm 10 \pm 5$	_
Fake- $\tau_{had-vis}$ backgrounds	_	$0.8 \pm 0.2 \pm 0.4$
Total background	$(0.90 \pm 0.02 \pm 0.10) \times 10^3$	$9.5 \pm 0.8 \pm 1.9$
Observed data	834	10

Process	Events		
	Boosted	VBF	
$gg \rightarrow H (125 \text{ GeV})$	$20.3 \pm 0.7 \pm 5.1$	$0.5 \pm 0.1 \pm 0.3$	
VBF <i>H</i> (125 GeV)	$5.3 \pm 0.2 \pm 0.3$	$2.5 \pm 0.2 \pm 0.4$	
VH (125 GeV)	$2.7 \pm 0.2 \pm 0.2$	< 0.001	
$Z/\gamma^* o au au^\dagger$	$(1.78 \pm 0.03 \pm 0.11) \times 10^3$	$17 \pm 2 \pm 6$	
Diboson [†]	$12.2 \pm 0.9 \pm 1.0$	$0.6 \pm 0.3 \pm 0.4$	
$Z/\gamma^* \to \ell \ell^{\dagger}$	$18 \pm 9 \pm 4$	$1.7 \pm 0.5 \pm 1.2$	
Top [†]	$111 \pm 8 \pm 33$	$2.0\pm0.7\pm1.0$	
W boson + jets (OS-SS)	$(0.27 \pm 0.06 \pm 0.04) \times 10^3$	_	
Same sign data	$(0.34 \pm 0.02 \pm 0.01) \times 10^3$	_	
Fake- $\tau_{had-vis}$ backgrounds	_	$7.6 \pm 0.7 \pm 3.8$	
Total background	$(2.53 \pm 0.07 \pm 0.13) \times 10^3$	$29 \pm 2 \pm 7$	
Observed data	2602	29	

$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	7 TeV analysis (4.6 fb^{-1})		8 TeV analysis (13.0 fb^{-1})		
	VBF category	Boosted category	VBF category	Boosted category	
$gg \rightarrow H (125 \text{ GeV})$	$0.36 \pm 0.06 \pm 0.12$	$2.4 \pm 0.2 \pm 0.7$	$1.0 \pm 0.1 \pm 0.3$	$8.2 \pm 0.4 \pm 1.8$	
VBF <i>H</i> (125 GeV)	$1.12 \pm 0.04 \pm 0.18$	$0.68 \pm 0.03 \pm 0.07$	$3.01 \pm 0.09 \pm 0.48$	$1.98 \pm 0.07 \pm 0.30$	
VH (125 GeV)	< 0.02	$0.61 \pm 0.05 \pm 0.06$	< 0.05	$1.4 \pm 0.2 \pm 0.2$	
$Z/\gamma^* \to \tau \tau$ embedded	$20 \pm 2 \pm 3$	$392 \pm 9 \pm 12$	$50 \pm 4 \pm 6$	$1080 \pm 20 \pm 110$	
W/Z boson+jets	$1.5 \pm 0.7 \pm 0.4$	$5 \pm 1 \pm 1$	0.4 ± 0.4	$90 \pm 20 \pm 30$	
Тор	$1.0 \pm 0.2 \pm 0.2$	$3.0 \pm 0.3 \pm 0.5$	1.4 ± 1.0	$21 \pm 3 \pm 5$	
Diboson	$0.10 \pm 0.07 \pm 0.02$	$4.4 \pm 0.6 \pm 0.7$	< 0.01	< 0.5	
Multijet	$10.2 \pm 0.9 \pm 5.0$	$156 \pm 6 \pm 30$	$44 \pm 5 \pm 7$	$420 \pm 20 \pm 60$	
Total background	$32.5 \pm 2.2 \pm 5.9$	$561 \pm 11 \pm 32$	$96 \pm 6 \pm 9$	$1607 \pm 37 \pm 130$	
Observed data	38	535	110	1435	

Categorization (lep-had)

7 Te	eV .	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	—	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
$\triangleright \geq 2$ jets	▶ $p_{\rm T}^{\rm H}$ > 100 GeV	$\triangleright \geq 2$ jets	▷ $p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_{\rm T}^{\ j1}, p_{\rm T}^{\ j2} > 40 \text{ GeV}$	▶ $0 < x_1 < 1$	▷ $p_{\rm T}$ $^{j1} > 40, p_{\rm T}$ $^{j2} > 30 {\rm GeV}$	▷ $0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	
⊳ <i>m_{jj}</i> > 500 GeV	▹ Fails VBF	$\triangleright m_{jj} > 500 \text{ GeV}$	▶ Fails VBF	
▷ centrality req.	—	▶ centrality req.	_	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	—	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
$\triangleright p_{\rm T}^{\rm Total} < 40 { m GeV}$	—	$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$	_	
_	—	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	_	
• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <50 GeV	• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
	_	• <i>b</i> -tagged jet veto	• <i>b</i> -tagged jet veto	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ \geq 1 jet, $p_{\rm T}$ >25 GeV	\triangleright 0 jets $p_{\rm T}$ >25 GeV	▶ ≥ 1 jet, $p_{\rm T}$ >30 GeV	\triangleright 0 jets $p_{\rm T}$ >30 GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
▶ Fails VBF, Boosted	▶ Fails Boosted	▶ Fails VBF, Boosted	▶ Fails Boosted	
• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <30 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	—	$ \bullet p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

Categorization (had-had)

Cut	Description
Preselection	No muons or electrons in the event
	Exactly 2 medium τ_{had} candidates matched with the trigger objects
	At least 1 of the τ_{had} candidates identified as tight
	Both τ_{had} candidates are from the same primary vertex
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$
	τ_{had} candidates have opposite charge and 1- or 3-tracks
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$
	$\Delta\eta(\tau,\tau) < 1.5$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV
	$\eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
Boosted	Fails VBF
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset
	$\Delta R(\tau_1,\tau_2) < 1.9$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, $\min\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.