Search for SM Higgs in the H→ττ decay channel with CMS

Agni Bethani on behalf of the DESY/KIT analysis group

6th annual workshop DESY Hamburg 3rd-6th December 2012 Physics at the Terrascale Helmholz Alliance

Karlsruher Institut für Technologie

Introduction

- Large rate at m_h < 140 GeV
- For a light Higgs BR(H→ττ)=8% 1.8% H→ττ decay mode channel very promising!
- Accessible via all production mechanisms
- Test of the SM prediction for the τ Yukawa coupling.

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Results of Higgs Boson searches

Discovery of a Boson with mass 125 GeV was announced in ICHEP conference

- Luminosity 10fb⁻¹
- Result driven by $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
- No evidence for signal in fermionic decays

Current status: Results announced in HCP conference

- Luminosity 17fb⁻¹
- Improved analysis
 - Re-reconstruction of 2012 dataset improved description of forward jet response
 - Significantly improved MET resolution
 - Simplification of VBF selection

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Analysis strategy

• Final states analysed: $H \rightarrow \tau \tau \rightarrow ...$ • $\mu \mu$ (DESY/KIT)

- eµ
- μ +had
- e+had
- had+had

- Dedicated analysis for associated Higgs production with vector bosons
 - WH \rightarrow ltt
 - $ZH \rightarrow ll\tau\tau$ (l is μ or e)
- Basic pre-selection of events
 - opposite sign leptons
 - isolated
 - different triggers applied depending on the channel and the LHC period

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Event categories

 The events a divided into categories according to the jet multiplicity and lepton p_T

o jets	 low p_T background calibration no signal extracted 	 high p_T background calibration no signal extracted 			
1 jet	low p _T • Large statistics	 high p_T Improved m_{ττ} resolution Suppressed Z→ττ background 			
2 jets/VBF	eµ,µτ _h ,eτ _h : m _{jj} >500 GeV, Δη _{jj} >3.5, central jet veto τ _h τ _h : m _{jj} >250 GeV, Δη _{jj} >2.5 µµ: MVA selection (discussed in detail later)				
q q q W/Z q W/Z q Agni Beth	ani DIST/KIT, oth Annual worksho Physics at the Terrascal	^g b o g o g o g o g o g o g o g o g o g o	H		

5

Topological selection

For the $\mu \tau_h$, $e \tau_h$ and $e \mu$ final states further discrimination is needed against background (mainly W+Jets and ttbar jets)

- In the $e\tau_h$ and $\mu\tau_h$ a cut is applied to the transverse mass:
 - $m_T = \sqrt{2 \cdot p_T(l) \cdot MET(1 \cos(\Delta \varphi_l, MET))}$
 - m_T<20GeV
- In the eµ the selection is based on :
 - $p^{cut}_{\zeta}(\alpha) = p^{miss}_{\zeta} \alpha \cdot p^{vis}_{\zeta}$
 - p^{cut} z>-25GeV
 - the α value is determined in order to optimize the S/B ratio

MVA analysis in the µµ final state

- The $H \rightarrow \tau \tau \rightarrow \mu \mu$ decay channel is challenging
 - Large Drell-Yan background Z/γ*→μμ
 - Small topological branching fraction of the $\tau\tau \rightarrow \mu\mu\nu\nu\nu\nu$ decays, (Br ~ 3%).
- A Boosted Decision Tree (BDT) is trained using µ kinematic variables and tau decay length information (Distance of Closest Approach)

MVA analysis in the µµ final state

VBF dedicated selection

 BDT trained using μ kinematic variables ,tau decay length information, MET and jet related variables m_{ii}, Δη_{ii}

Background estimation

 $Z \rightarrow \tau \tau$: most important irreducible background estimated from an embedded sample.

• This sample is derived from $Z \rightarrow \mu\mu$ events in data where each muon has been replaced by a simulated τ lepton.

Other Background contributions

QCD	Normalisation and shape taken from SS/OS or fake rate
ttbar	Shape from simulation ; normalisation from side band
Z→ee(µµ)	Estimated from simulation, corrected for efficiency and $e{\rightarrow}\tau_h$ and $j{\rightarrow}\tau_h$ fake rate
Diboson/W+Jets	Shape from simulation ; normalisation from side band
and the second is	Physics at the Terrascale 9

Background estimation

- $Z \rightarrow \mu \mu$ for the $\mu \mu$ final state
 - Shape from MC, normalisation from fit to DCA significance.
 - The fit is performed in bins of visible mass, "reduced BDT" and reconstructed τ pair mass. The reduced BDT is trained with the same variables as the BDT used for background rejection apart from the DCA significance.

Reconstruction of τ pair

- The invariant mass of the two τ is determined with maximum likelihood method
 - Inputs: four-vector information of visible leptons, x- and y- component of MET on event by event basis
 - Free parameters: ϕ , x, $(m_{\nu\nu})$ per τ (4-6 parameters).
 - Scan of $m_{\tau\tau}$ from m_{τ} up to 2TeV
 - 15-20% resolution of the reconstructed $m_{\tau\tau}$ mass.

Sensitivity of the analysis

the $\mu \tau_h$

 Most sensitive channel is
 VBF and combined 1 jet category have similar strength

> Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Associated production with vector bosons

 Small background compared to to inclusive H→ττ decay channels.

• Signal extracted from mass of visible decay products (m_{vis}).

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Exclusion sensitivity(125 GeV) ~ 1. Observed limit(125 GeV) ~ 1.6
Compatible with Higgs boson signal at 125 GeV but also with background only hypothesis.

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Summary

 Analysis of 17fb⁻¹ is performed in 5 final states plus 2 more from the dedicated analysis to the associated Higgs production with vector bosons

- Observation compatible with both background only and signal plus background hypothesis
- Limits are set on signal strength.
- Looking forward to analyse more data. Expected ~ 25fb⁻¹ by the end of this year.

Thank you for your attention!

Systematic uncertainties

Experimental Uncertainties		Propagation into Limit Calculation					
Uncertainty	Uncert.	0-Jet	Boost	VBF			
Electron ID & Trigger (*)	±2%	±2%	±2%	±2%			
Muon ID & Trigger (*)	±2%	±2%	±2%	±2%			
Tau ID & Trigger (*)	±7%	±7%	±7%	±7%			
JES (Norm.) (*)	$\pm 2.5 - 5\%$		$\pm 5\%$	±10%			
b-Tag Efficiency (*)	$\pm 10\%$		∓2%				
Mis-Tagging (*)	$\pm 30\%$						
Norm. $Z \rightarrow \tau \tau$	±3%	±3%	$\pm 5\%$	±13%			
Norm. $t\bar{t}$ (*)	$\pm 10 - 30\%$	$\pm 10\%$	$\pm 12\%$	±30%			
Norm EWK	$\pm 30\%$	$\pm 30\%$	$\pm 15 - 30\%$	$\pm 30 - 100\%$			
Norm Fakes	$\pm 10 - 30\%$	$\pm 10\%$	$\pm 10\%$	$\pm 30\%$			
Lumi (Signal & EWK)	$\pm 2.2(5)\%$	$\pm 2.2(5)\%$	$\pm 2.2(5)\%$	$\pm 2.2(5)\%$			
Norm. $W + jets$	$\pm 10 - 30\%$	$\pm 10\%$	$\pm 10 - 30\%$	$\pm 30\%$			
Norm. <i>Z</i> : <i>l</i> fakes τ_h	$\pm 20 - 100\%$	$\pm 20 - 30\%$	$\pm 20 - 100\%$	$\pm 30\%$			
Norm. <i>Z</i> : jet fakes τ_h	$\pm 20\%$	$\pm 20\%$	$\pm 20\%$	$\pm 30\%$			

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Reconstruction of MET

- Combining several different methods of MET reconstruction into an MVA regression
 - Trained on recoil of $Z \rightarrow \mu \mu$ events in data.
- Significantly improved resolution
- Significantly reduced pile up dependency
 - Large impact on $H \rightarrow \tau \tau$ analysis
 - MET is part of the event selection
 - MET is used in the τ pair mass reconstruction

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Signal strength

Signal strength after fit: 0.72±0.52
Compatible with the SM

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale

Overlap with ICHEP dataset

• 2011 data

• 2012 data

Agni Bethani DESY/KIT, 6th Annual workshop Physics at the Terrascale 03/12/2012

20

Embedding method

21