

Search for SM $H \rightarrow$ bb decays with ATLAS

Stephan Hageböck 04.12.2012

Searching the Higgs with b-Jets

- b-jet background ~ 8 orders of magnitude larger
- Clean leptonic signatures in associated Higgs production
- This talk: Cut analysis for HCP 2012 ATLAS-CONF-2012-161

- Test if new particle is compatible with Higgs-Boson
 - bb: most prevalent decay (~ 58%)
 - Coupling to fermions

Input for measurement of VH coupling

Search Strategy

- Associated production
- Cuts for all channels:
 - 2-3 jets:
 1st jet pt > 45 GeV
 other jets pt > 20 GeV
 - 2 b-jets: 70% efficiency

■ WH →lvbb

- Exactly 1 lepton
- MET > 25 GeV
- 40 < MTW < 120 GeV
- Single lepton trigger

- ZH \rightarrow llbb
 - Exactly 2 leptons
 - MET < 60 GeV
 - 83 < mZ < 99 GeV
 - Single + di-lepton triggers

\blacksquare ZH \rightarrow vvbb

- No lepton
- MET > 120 GeV
- MET Triggers

How to find the Higgs

- Blinded Analysis
- Data: 2011: 4.7 fb⁻¹ (7 TeV)
 2012: 13 fb⁻¹ (8 TeV)
- Improvements in sensitivity:
 - **S/B** improves with high p_T^{bb}
 - 0 lepton: MET [120-160] [160-200] [>200] GeV (2 jets, 3 jets)
 - 1 & 2 lepton: $p_T^{W/Z}$ [0-50] [50-100] [100-150] [150-200] [>200] GeV
 - \rightarrow 16 signal categories
 - Topological cuts refined separately in bins of $p_T^{W/Z}$
- Mass resolution for b-jets
 - Muons from semileptonic decays added to jets
 - Momentum corrections
 - b-tagging calibration from tt measurements: reduced systematic uncertainties for high p_T

Backgrounds

- Multi-jet background: Estimated from data (reversed lepton isolation)
- WZ,ZZ from simulation
- Other backgrounds: Shape: MC simulation Normalisation: Flavour fit to data

• Z+ b/c/light-jets Alpgen/Sherpa

Example: Flavour Fit (1 Lepton)

Flavour Fit Results

- Determine flavour composition for VB +light/c: ML fit
 - Consistent between 7 and 8 TeV data
 - Z+c: MC generator changed
- W/Z p_T:
 - **p**_T spectrum in data falls more rapidly
 - W + jets: 5-10% correction in high p_T bins
 - **Top:** 15%
- Most important backgrounds: W+b, Z+b & Top
 - Normalization determined in profile likelihood fit

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Z + c	1.99 ± 0.51	0.71 ± 0.23
Z+ light	0.91 ± 0.12	0.98 ± 0.11
W + c	1.04 ± 0.23	1.04 ± 0.24
W+ light	1.03 ± 0.08	1.01 ± 0.14

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Тор	1.10 ± 0.14	1.29 ± 0.16
Z + b	1.22 ± 0.20	1.11 ± 0.15
W + b	1.19 ± 0.23	0.79 ± 0.20

7

Final Invariant Mass Distributions 0 Leptons

Systematic Uncertainties

- Main experimental uncertainties
 - **Jets** (7 JES, 1 p_T^{Reco}, resol.)
 - MET: scale and resolution
 - **b-tagging**: light, c & 6 p_T efficiency bins
 - Top, W, Z: background modelling
 - MC statistics
- Main theoretical uncertainties
 - m_{bb} spectrum
 - p_T spectrum of VB
 - BR(H→bb)
 - Signal cross sections
 - Single top/top normalisation
 - W+c, Z+c cross sections

	Uncertainty [%]	0 lept	ton	1 lepton	2 leptons	
	b-tagging	6.5	5	6.0	6.9	
	c-tagging	7.3	;	6.4	3.6	
ב	light tagging	2.1		2.2	2.8	
	Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20		7.0	5.4	
H	Lepton	0.0		2.1	1.8	
S	Top modelling	2.7		4.1	0.5	
ý.	W modelling	1.8	3	5.4	0.0	
Ľ,	Z modelling	2.8	3	0.1	4.7	
б О	Diboson	0.8	3	0.3	0.5	
•	Multijet	0.6	5	2.6	0.0	
	Luminosity	3.6	5	3.6	3.6	
	Statistical	8.3	;	3.6	6.6	
	Total	25		15	14	
:		0.1				
	Uncertainty [%]	0 lepton		1 lepton	2 leptons	
	1	ZH	WH	WH	ZH	
	b-tagging	8.9	9.0	8.8	8.6	
_	Jet/Pile-up/E _T	19	25	6.7	4.2	
ק	Lepton	0.0	0.0	2.1	1.8	
- L	$H \rightarrow DD BK$	5.5	3.3	3.3	3.3	
	$VH p_T$ -dependence	5.3	8.1	/.6	5.0	
	VH theory PDF	3.5	3.5	3.5	3.5	
	VH theory scale	1.6 0.4		0.4	1.6	
	Statistical	4.9 18		4.1	2.6	
	Luminosity	3.6	3.6	3.6	3.6	
	Total	24	34	16	13	

Diboson Analysis

- Simple cross check of $H \rightarrow bb$ analysis
 - WZ→lvbb & ZZ→llbb / vvbb: same final state
 - Cross section 5x larger
 - Same search strategy, separate profile likelihood fit, not separated in p_T bins
- Here: All backgrounds subtracted
- Results:
 - Significance: 4.0σ
 - µ = 1.09 ± 0.20 (stat) ± 0.22 (syst)

CL_s Limits: Combination of Channels

- Binned profile likelihood fit to 16 signal regions and top control regions
 - Main backgrounds W+b, Z+b and top floating
 - Likelihood L(μ,θ)
 μ: signal strength (= σ/σ_{SM})
 θ: nuisance parameters for systematic uncertainties
- Results at m_H = 125 GeV
 - Observed (expected) limits
 2011:1.8 (3.3)
 2012: 3.4 (2.5)

CL_s Limits: Combination of Channels

- Binned profile likelihood fit to 16 signal regions and top control regions
 - Main backgrounds W+b, Z+b and top floating
 - Likelihood L(μ,θ)
 μ: signal strength (= σ/σ_{SM})
 θ: nuisance parameters for systematic uncertainties
- Results at $m_{\rm H} = 125 \ {\rm GeV}$
 - Observed (expected) limits

2011:**1.8** (**3.3**) 2012: **3.4** (**2.5**)

- Background-only probability p₀
 2011: 0.97 (0.26) 2012: 0.17 (0.20)
- Signal strength:
 2011: -2.7±1.1±1.1
 2012:

2012: 1.0±0.9±1.1

Combination of 2011 & 2012

• Combination of 2011 and 2012, $m_H = 125 \text{ GeV}$

■ Limit: 1.8 (1.9) x SM prediction

■ p₀: 0.64 (0.15)

■ µ: -0.4 ± 0.7 (stat) ± 0.8 (syst)

Comparison to CMS: Search Strategy

ATLAS

- Associated production with VB
- 3 channels: 0,1,2 leptons (e,µ)
- Search for excess in invariant mass of 2 b-jets
- Cut analysis
- 5 categories in $p_T^V: 0 >200 \text{ GeV}$
- Correction of semileptonic muon decays in jets

CMS-PAS-HIG-12-044

- Associated production with VB
- 3 channels: 0,1,2 leptons (e,µ)
- Search for excess in invariant mass of 2 b-jets
- Boosted decision trees (BDT)
- 2 categories in p_T^V: 120-170, >170 GeV (WH)
- Multivariate regression to improve mass resolution

Comparison to CMS: DiBoson

ATLAS

CMS-PAS-HIG-12-044

Comparison to CMS: Limits

ATLAS

CMS-PAS-HIG-12-044

Summary

- First combined 2011/2012 analysis in H → bb channel
 - Improvements in sensitivity
 - 2σ deficit in 2011, 1σ excess in 2012 data
- Observed (expected) limit:
 1.8 (1.9) at m_H = 125 GeV
- Clear di-Boson signal (4.0σ):
 - µ = 1.09 ± 0.20 (stat) ± 0.22 (syst)
 - In agreement with SM

ATLAS-CONF-2012-161

Backup

CL_s Limits: Combination of Channels

- Binned profile likelihood fit, 16 signal regions, top control regions
 - Main backgrounds W+b, Z+b and top floating
 - Likelihood L(μ,θ)
 μ: signal strength (= σ/σ_{SM})
 θ: nuisance parameters for systematic uncertainties
- Comparison to previous analysis
 - Observed (expected) limits
 2011:1.8 (3.3)

Previous 2011: 3.5 (3.8)

$2011:WH \rightarrow lvbb$

$2011: ZH \rightarrow llbb$

2011: ZH \rightarrow vvbb

Event Numbers

	0-lepton, 2 jet 0-lepton, 3 jet			t	1-lepton				2-lepton							
Bin	$E_{\rm T}^{\rm miss}$ [GeV]					$p_{\rm T}^W[{\rm GeV}]$				$p_{\rm T}^{\rm Z}[{\rm GeV}]$						
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c,light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	±12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	±14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

Preselection cuts

Object	0-lepton	1-lepton	2-lepton		
Laptons	0 loose leptons	1 tight lepton	1 medium lepton		
Leptons		+ 0 loose leptons	+ 1 loose lepton		
	2 <i>b</i> -tags	2 <i>b</i> -tags	2 <i>b</i> -tags		
Late	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$		
Jets	$p_{\rm T}^2 > 20 { m ~GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 { m ~GeV}$		
	$+ \leq 1$ extra jets	+ 0 extra jets	-		
Missing Fr	$E_{\rm T}^{\rm miss} > 120 { m ~GeV}$	-	$E_{\rm T}^{\rm miss} < 60 { m ~GeV}$		
Witssing LT	$p_{\rm T}^{\rm miss} > 30 { m ~GeV}$				
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$				
	$Min[\Delta \phi(E_T^{miss}, jet)] > 1.5$				
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$				
Vector Boson	-	$m_{\rm T}^W < 120 { m ~GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$		

Topological Cuts

Comparison to CMS

ATLAS

Multijet Estimate

- 0 lepton
 - Use ABCD method
 - Regions defined by relative directions of MET/jets/pTmiss
 - ➢ Found to be small (~1%)
- 1 lepton
 - MET template by reverse isolation cuts
 - Normalised by fitting each WpT bin
 - Electroweak contamination removed from template
- 2 lepton
 - Template: reverse isolation/quality selection
 - Found to be small (<1%)</p>

ABCD method Use lack of correlation Δφ (Etmiss,pTmiss) vs Δφ (Etmiss,jets)

for multi-jet background estimation in signal region

From Phil Clark's talk at HCP

Ratio to SHERPA MC