Towards true frequentist p-values for global SUSY fits with Fittino

Xavier Prudent, Björn Sarrazin et al.

6th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

1

FITTINO

- C++ program for SUSY model testing and SUSY parameter analysis
- Currently supported SUSY models:
 CMSSM, GMSB, AMSB, MSSM24, NMSSM, NUHM1, NUHM2
- Measurements from low/high energy experiments, direct SUSY search LEP/SLC, Tevatron, cosmology, LHC and LC, (g-2), B, K...
- Use puplic theory codes: SPheno, SuperIso, Micromegas, FeynHiggs, HDecay
- Parameter analysis using full correlation information: Auto-adaptive Markov Chain Monte Carlo (MCMC)

Previous publications:

<u>arXiv:0412012</u> [hep-ph] (2004), <u>arXiv:0511006</u> [hep-ph] (2005), <u>arXiv:0907.2589</u> [hep-ph] (2009), <u>arXiv:0909.1820</u> [hep-ph] (2009), <u>arXiv:1105.5398</u> [hep-ph] (2011), <u>arXiv:1102.4693</u> [hep-ph] (2011), <u>arXiv:1204.4199</u> [hep-ph] (2012),

X. Prudent, B. Sarrazin et al. -- Alliance Meeting 03.12.2012

Non-minimal model: additional Higgs mass parameter: NUHM1, NUHM2

X. Prudent, B. Sarrazin et al. -- Alliance Meeting 03.12.2012

NEW Observables

- <u>Higgs limits</u> via *HiggsBounds* or requiring $m(h^0) = (126 \pm 2 \text{ (exp)} \pm 3(\text{theo}))$ GeV

Higgs discovery via HiggsSignals (fit of m(h⁰) and μ (h⁰))

- LEP chargino limit (implications for neutralino limits)
- LHC exclusion from 'jets+MET' analysis L=4.7/fb

Fine-tuning of the simulation to match the ATLAS exclusion

- Direct detection of DM via AstroFit

generated by HiggsSignals

Higgs session: Tuesday 11:00 in SR 4a

Full 5D fit (M_0 , M_{12} , tan β , A_0 , m(top)) including all observables: low energy, astrophysics, direct searches, Higgs combined constraints (m(h^0), μ)

Pretty good fit, with tendency to higher masses and tan β (coupling throug (g-2)_u)

mininal Chi2/ndf = 33.5/31

All Observables, no combined Higgs constraints, Only asking for $m(h^0)=(125 \pm 2 \pm 3)$ GeV

First measurement of $B_s \rightarrow \mu^+ \mu^-$ by LHCb !

arxiv:1211.2674 [hep-ex]

M ₀ :	477.1 (730.7)	[-396.1 <i>,</i> +700.5] GeV
M ₁₂ :	861.3 (880.5)	[-158.0 <i>,</i> +395.0] GeV
A ₀ :	-2332.6 (-2225.83)	[-1975.2 <i>,</i> +768.4] GeV
Tanβ:	20.5 (32.7)	[-18.0, +9.1]
Chi2:	33.4 (34.0)	

Minor impact on the best fit point, increase of M_0 and tan β

Well-spread thought:

"The fit is good if this number is roughly one"

 \rightarrow Because the mean value of a $\chi 2$ distribution is the number of degrees of freedom

"our" **x2**:
$$\chi^2 = (M - O(P))^T \operatorname{cov}_M^{-1}(M - O(P))$$

M: measurements O(P): predictions at point P covM: covariance matrix

This assumption that our $\chi 2$ is distributed according to a $\chi 2$ distribution is correct only:

- if the Oⁱ are Gaussian-distributed and if the dependency O(P) is linear.
- or if a large number of observables is used

Therefore TMath::Prob may not give the right value !!

→ Risk of drawing a wrong conclusion on the validity of a model

What is the p-value?

Assuming the best fit point found is the real one, if measurements are repeated, what is the probability to get an agreement (i.e. χ 2) at least as worse as the one observed?

Computation of the p-value of the best fit point (lower $\chi 2$) with toys:

- take the observables values at this point
- smear the observables values
- calculate the $\chi 2$ for these new pseudo-measurements
- spot the new best fit point
- repeat that procedure many times
- integrate the distribution for $\chi 2 \ge \chi 2$ (real fit)

Statistical uncertainty (binomial rule: $N_p = #(\chi 2 > \chi 2 \text{ (real fit)}), N_g = #(\text{total})$ $\frac{\sigma(X)}{\langle X \rangle} = \sqrt{\frac{1}{N_p} - \frac{1}{N_q}}$

X. Prudent, B. Sarrazin et al. -- Alliance Meeting 03.12.2012

Results of the toys: 1st frequentist p-values for the CMSSM !

Total toy statistics per model: 1000

Model	Toys	χ2 approx.
CMSSM	29.6 ± 1.4	41.7
NUHM1	31.7 ± 1.5	41.4
NUHM2	31.2 ± 1.5	34.7

Parameters distributions for the CMSSM (more in backup)

X. Prudent, B. Sarrazin et al. -- Alliance Meeting 03.12.2012

A few observables distributions for the CMSSM (more in backup)

X. Prudent, B. Sarrazin et al. -- Alliance Meeting 03.12.2012

Conclusion & Plans

The first real toy-based frequentist p-values for the CMSSM!

SM-like Higgs sector easily achievable within the CMSSM, NUHM

- → good agreement of the fit with the SM-like Higgs rate (Tevatron, LHC)
- → improvement in Fit Quality (45%)
- First measurement of $B_s \rightarrow \mu^+ \mu^-$ in agreement with the SM **perfectly expected within constraint SUSY**

Still room for M_{12} , $M_0 < 1$ TeV

Higgs mass and rate measurements push the CMSSM into a parameter space where the **differences to the SM in all observables (apart** Ω_{DM} **) is small** \rightarrow negligible improvement in (g-2)_u wrt the SM

 χ^2

Where is the focus point gone?

Searching for SUSY at the TeV scale ... and ?

2011: long LHC run, center-of-mass energy 7 TeV, luminosity ~5/fb.

- Direct step into Terascale
- No significant excess seen

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2011-19/

Short reminder of the previous Fittino results

Main Conclusions

- **Current LHC exclusion leads to tension** within CMSSM
- Accommodate Higgs mass ≥ 125 GeV very hard in mSUGRA

Measurement of Higgs branching ratios can discriminate SM/MSSM

Published JHEP 06 (2012) 098 Presented at ICHEP 2012 – Melbourne

And now what ...?

Improvements

Observables

$\mathcal{B}(b ightarrow s \gamma)$	$(3.55\pm0.34) imes10^{-4}$
$\mathcal{B}(B_s \to \mu \mu)$	$< 4.5 imes 10^{-9}$
$\mathcal{B}(B \to \tau \nu)$	$(1.67\pm0.39) imes10^{-4}$
Δm_{B_s}	$17.78\pm5.2{\rm ps}^{-1}$
$a_{\mu}^{\mathrm{exp}}-a_{\mu}^{\mathrm{SM}}$	$(28.7\pm8.2) imes10^{-10}$
m_W	$(80.385 \pm 0.015){ m GeV}$
$\sin^2 heta_{ m eff}$	0.23113 ± 0.00021
$\Omega_{ m CDM} h^2$	0.1123 ± 0.0118
m _t	$(173.2\pm1.34)~{ m GeV}$

- <u>Higgs limits</u> via *HiggsBounds* or requiring $m(h^0) = (126 \pm 2 \text{ (exp)} \pm 3(\text{theo}))$ GeV

- LEP chargino limit (implications for neutralino limits)
- LHC exclusion from 'jets+MET' analysis L=4.7/fb
- Direct and indirect detection of DM via AstroFit

Comparison of models performed using p-values

 \rightarrow Computed assuming the observables likelihood to be Gaussian

 \rightarrow integration of a $\chi 2$ distribution function

What is the p-value?

Assuming the best fit point found is the real one, if measurements are repeated, what is the probability to get an agreement (i.e. χ 2) at least as worse as the one observed?

1

Toy fits (χ^2 distribution)

Mass spectra from the previous Fittino results: JHEP06(2012)098

Figure 9. Predicted distribution of sparticle and Higgs boson masses from (a) the LEO fit and (b) the LHC fit. The full uncertainty band gives the 1-dimensional 2σ uncertainty of each mass defined by the region $\Delta\chi^2 < 4$ after profiling over all hidden dimensions.

Mass spectra from the previous Fittino results: JHEP06(2012)098

Figure 13. Predicted distribution of sparticle and Higgs boson masses from the CMSSM fit with $m_h = (126 \pm 2 \pm 3) \text{ GeV}$ in (a) and the NUHM1 fit to the same observable set in (b).

Figure 16. Predicted distribution of sparticle and Higgs boson masses from (a) the LHC and (b) the LHC+XENON1T fit. The full uncertainty band gives the 1-dimensional 2σ uncertainty of each mass defined by the region $\Delta \chi^2 < 4$ after profiling over all hidden dimensions. Note the different scales on the ordinate (mass) axis compared to figure 9.