Search for New Phenomena in Dijet Mass and Angular Distributions at ATLAS

Oliver Endner

JGU Mainz

December 3rd, 2012

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

- Introduction
- 2 Dijet Mass Analysis
- 3 Angular Analysis
- 4 Summary

arXiv:1210.1718 (2011 paper submitted to JHEP) ATLAS-CONF-2012-148 (2012 conference note)

Motivation

Highest energies at LHC make it possible to look for New Phenomena:

- new particles
 - excited quark q^{*}
 - heavy gauge boson W'
 - string resonances SR
 - quantum black holes QBH
 - color scalar octet S8
- new interactions
 - · Contact interaction

Eventdisplay (pp \rightarrow jj + x)

Highest jet p_t event: $p_t = 2.34$ TeV and 2.10 TeV

Motivation

Search for deviations from the SM in 3 spectra:

- Dijet mass (QCD: smoothly falling)
- $\chi = exp(|y_1 y_2|)$ in bins of m_{jj} (QCD: approx. flat)
- $F_{\chi}(m_{jj}) = \frac{N(|y^*| < 0.6)}{N(|y^*| < 1.7)}$ with $y^* = 0.5 \cdot (y_1 y_2)$ (QCD: flat)

Analysis Strategy Dijet Mass

- Search for narrow width resonances
 - Event + Jet Selection
 - Fit QCD background from data
 - Search for significant excesses
- 2 Set limits on New Phenomena
 - Determine systematic uncertainties
 - Calculate limits on mass of hypothetical NP particles
 - Calculate limit on σ · A for Gaussian shaped signal

QCD Background Fit

Fit function for QCD background:

$$f(x) = p_1 \cdot (1-x)^{p_2} \cdot x^{p_3 + p_4 \cdot \ln(x)}$$

with $x = m_{jj}/\sqrt{s}$

Smoothly falling function

Not flexible enough to hide narrow resonances p-Value for null hypothesis: 0.98

Systematic uncertainties

1 Jet energy scale (JES) uncertainty:

- · Gaussian limits: use conservative value of 4% for shifting peak
- Bayesian limit setting: use signal templates with jets shifted by 2012 JES (propagated via grid convolution)
- 2 Jet energy resolution uncertainty:
 - Negligible wrt JES uncertainty
- Acceptance uncertainty:
 - · Uncertainty derived by using changes in acceptance due to JES
- 4 Luminosity uncertainty:
 - Using preliminary 2012 value of 3.6%
- 6 Fit uncertainty
 - · Derived by fitting to pseudo-data

Limit Setting

*q**(2012)

S8(2011)

Models	<i>q</i> *(2012)	S8	SR	W'
expected Limit [TeV]	3.70	1.97	3.47	1.74
observed Limit [TeV]	3.84	1.86	3.61	1.68

Limit Setting II

Limits for Gaussian shaped signals

Angular Analysis

Analysis Strategy Angular Distributions

- 1 Search for deviations from QCD
 - Event + Jet Selection
 - QCD background from LO MC + bin-by-bin k-factors
 - Determine systematic uncertainties
 - Statistical tests of null hypothesis
- 2 Set limits on New Phenomena
 - Determine systematic uncertainties
 - Calculate limits on contact interactions and QBH (χ)
 - Calculate limits on *q**, contact interactions and QBH (*F*_χ(*m_{ji}*))

Systematic uncertainties

Search phase + Limit setting:

- 1 JES uncertainty: 5% 15%
 - 14 nuisance parameters
- 2 Renormalisation/Factorisation scale: \approx 8 %
 - · QCD scales varied independently by a factor of two
- **3** PDFs: \approx 1 %
 - Using CT10 NLO PDF error sets

Search Phase I

χ spectrum with QBH superimposed

p-Value for null hypothesis: 0.17 - 0.38

O.Endner (JGU Mainz)

Search Phase II

 $F_{\chi}(m_{jj})$ spectrum with signals superimposed

O.Endner (JGU Mainz)

Limit Setting

Limits for QBH from F_{χ}

For n=6 Expected limit: 4.16 TeV Observed limit: 4.03 TeV

O.Endner (JGU Mainz)

Helmholtz Alliance

Summary

Search for New Physics with dijets produced in pp collisions at \sqrt{s} = 7/8 TeV using $\int \mathcal{L} dt = 4.8/13.0 \,\text{fb}^{-1}$ in three spectra:

- Dijet mass
- Two angular distributions

With data from 2011 and 2012 no new physics was found. Previous limits on New Phenomena have been improved.

Thanks for your attention!

Backup

Model overview

- Excited quark
 - · Same couplings as quark
- Heavy gauge boson W'
 - V-A SM couplings
 - · No interference with W considered
- String resonances
 - Fundamental string mass scale O(1 TeV)
 - Open strings ending on D-branes
- Quantum black holes
 - · Produced by black hole generator Blackmax
 - Different values for the reduced Planck scale M_d
- Color scalar octet
 - Example for exotic coloured resonance decaying to gluons
 - Predicted by different models: GUT, SUSY, Leptoquark, ...
- Contact interactions
 - Models quark compositness
 - · Only destructive interference taken into account