

Bundesministerium für Bildung und Forschung

Search for new physics with muons + X at CMS

Julien Caudron, on behalf of CMS Collaboration

RWTH Aachen University III. Physikalisches Institut A

PHYSICS AT THE TERASCALE Helmholtz Alliance

Introduction

Search for new physics:

in BSM physics without SUSY a lot of different analyses : https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

 \rightarrow a small selection of analyses is presented here

In Mu + X:

Leptonic signatures are clear, with low backgrounds Muon signatures (in CMS) are particularly well reconstructed X: additional object (MET, photon, ...)

Outline:

- Search for Z'
- Search for W'
- Search for excited muon
- Search for unparticle

Search for Z'

PAS EXO-12-015

2012 Data, 4fb⁻¹ (+ 5fb⁻¹)

Models:

Sequential SM :

 $\mathsf{Z'}_{\mathsf{SSM}}$ with coupling similar to SM

Super-string inspired E₆ GUT :

Ζ'_ψ

Other models

Signature and Strategy:

Two isolated opposite charge muons

Using 4.1fb⁻¹ of 2012 data ($\sqrt{s}=8$ TeV)

Search for a resonance in the dimuon invariant mass No excess observed \rightarrow 95% CL exclusion limits, set on $R_{\sigma} = \frac{\sigma(pp \rightarrow Z' + X \rightarrow \ell\ell + X)}{\sigma(pp \rightarrow Z + X \rightarrow \ell\ell + X)}$

Additionally, combination with ee channel, and with 5fb⁻¹ 2011 data ($\sqrt{s}=7$ TeV)

Search for Z'

Backgrounds:

Drell-Yan Z/γ^* :

irreducible background, from simulation, normalized with the data in the Z peak region

tt, (tW, diboson) : lower background (factor ~0.1 w.r.t. DY), from simulation contribute to eµ channel, used for cross-check
misid. muons : checked in data to be low

Search for Z'

PAS EXO-12-015

2012 Data, 4fb⁻¹ (+ 5fb⁻¹)

Search for W'

PAS EXO-12-010

2012 Data, 3.7fb⁻¹

Models:

Sequential SM :

 W'_{SSM} with SM coupling (no W' \rightarrow WZ)

Split Universal Extra Dimension:

 W'_{KK} is n=2 KK excited state,

parameters: μ (Bulk mass) and R (radius of the folded 5th dim)

Compositness: 4-fermion Contact Interaction:

no resonance, but same signature

parameter: Λ (binding energy scale)

Other models

Signature and Strategy:

Back-to-back balanced MET and isolated muon Using 3.7fb^{-1} of 2012 data ($\sqrt{s}=8 \text{TeV}$)

Search for an excess in $M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$

No excess observed \rightarrow 95% CL exclusion limits

Backgrounds:

irreducible W $\rightarrow \mu \nu$ + additional lower bkgd (QCD multijet, tt, DY, diboson) background M_T parametrized as $f(m; a, b, c) = a / (m + b)^c$ fitted from simulation, but normalized with data

Search for W'

PAS EXO-12-010

2012 Data, 3.7fb⁻¹

Search for excited muon

EXO-11-034 going for PLB 2011 Data, 5fb⁻¹

Models:

Compositness \rightarrow excited state General effective Lagrangian, parameters: Λ (compositeness scale) and M (mass)

- Signature and Strategy:
 - 2 muons + 1 high energy photon Using 5fb⁻¹ of 2011 data ($\sqrt{s}=7$ TeV)
 - Signal in min-max $M(\mu\gamma)$ plane
 - No excess observed
 - \rightarrow 95% CL exclusion limits
- Backgrounds:
 - $Z\gamma \rightarrow \mu\mu\gamma$: irreducible background, from simulation

others (tt, diboson, ...): low, from simulation misid. photons: data driven estimation

Search for excited muon

EXO-11-034 going for PLB 2011 Data, 5fb⁻¹

Limit:

 σ x BR: < 1.31 – 1.11 fb for m(μ*)>0.6 TeV For M(μ*)= Λ: M(μ*) > 1.9 TeV

(e channel similar)

Search for unparticle

PAS EXO-11-043

2011 Data, 5fb⁻¹

Ζ

Models:

Scale-invariant conformal field at high energy (H. Georgi 2007),

→ continuous mass spectrum assumptions: scalar with no FCNC parameters: $\Lambda_{_U}$ (ultraviolet cut-off), λ (coupling constant),

 $d_{_{\rm U}}$ (unparticle dimension (non integer))

Signature and Strategy:

2 muons from Z + MET (and nothing else) Using 5fb⁻¹ of 2011 data ($\sqrt{s}=7$ TeV)

Excess in high MET

No excess observed

 \rightarrow 95% CL exclusion limits

Backgrounds:

 $ZZ \rightarrow 2\mu 2\nu$: irreducible background, Drell-Yan + fake MET : MET studied in data, ¹⁰ others (diboson, tt, ...) : reduced by the selection, control region (eµ)

a

Search for unparticle

PAS EXO-11-043

2011 Data, 5fb⁻¹

Ζ

q

q

Limits:

- σ x BR: < 0.03 0.06 pb for d_U in [1,1.9], λ=1
- For $\lambda = 1$: exclusion up to $\Lambda_{ij} > 100 \text{TeV}$ (for $d_{ij} = 1.45$)

For Λ_{U} =3TeV: exclusion up to $\lambda < 8.10^{-4}$ (for d_U=1.04)

Conclusion

Numerous BSM analyses have been performed in CMS (even without SUSY). Four of them have been presented here:

- Search for Z'
- Search for W'
- Search for excited muon
- Search for unparticle

The leptonic final states, and in particular the muon channels, are particularly efficient: well reconstructed in CMS, with low background

No excess has been observed, but limits have been stated

- \rightarrow useful to exclude models
- LHC: results shown here: $2011, \sim 5fb^{-1}$ $2012, \sim 5fb^{-1}$ expected: $\sim 25fb^{-1}$ \rightarrow stay tuned for new results

Backup slides

Muons in Exotic searches

Muon detection in CMS:

3 detectors: Drift Tubes, Cathode Strips, and RPC (for trigger)

Muon reconstruction:

Segments are reconstructed in each chambers From these segments \rightarrow standalone track From this track + tracker info \rightarrow global track

 \rightarrow Very high reco / id efficiency and resolution

High energy muons:

- muons with $p_{\tau} > 100 \text{ GeV}$
 - \rightarrow radiative losses, no longer MIP
 - affects the p₊
 - → tune P (or "cocktail") algorithm
 - affects the isolation \rightarrow tracker iso only
- cosmic muons: easily rejected (di-μ angle, |d₀|)

Leptons reconstruction and selection

Usual selection (mainly based on Z' study):

- **Triggers:** For muon: Single muon trigger (maximum: $p_T > 40$ GeV, $|\eta| < 2.1$)
 - For dielectron: Double electron trigger (E_T(cluster) > 33 GeV)
 - For single electron: Single electron trigger (E_T(cluster) > 85 GeV)
- **Kinematics:** p_T and $|\eta|$ consistent with triggers

(muon: $p_T > 45$ GeV, $|\eta| < 2.1$, electron: $p_T > 35$ GeV, $|\eta| < 2.4$ without [1.442,1.560])

Identification:

- Track of the lepton consistent with the collision point ($|d_0| < 0.2 \text{ cm}$)
- For muon:
 - cosmic muon rejection (dimuon: angle < pi-0.02 rad, single muon: stronger |d₀| cut)
 - good track quality (≥ 1 hit in pixel tracker, ≥ 9 hits in silicon tracker, ≥ 2 segment in muon stations)
- For electron:
 - good correspondence track ECal cluster ($\Delta\eta$, $\Delta\phi$)
 - energy deposit electron-like (E_{ECal}/E_{HCal}, shower shape variables)
- Isolation:
 - For muon: relative isolation in the tracker in a 0.3 cone (robust again Pile-Up)
 - For electron: isolation in the tracker and the calorimeter in a 0.3 cone (corrected for Pile-Up)

W' study

Interference:

If W' is left-handed → interference with W The destructive (constructive) interference will reduce (increase) the limit

EXO-11-024, with 2011 Data, 5.0 fb⁻¹ 10.1007/JHEP08(2012)023 arXiv:1204.4764

q

a

W'

Z' 2011

EXO-11-0

2011 Data, 5fb⁻¹

Search for unparticle

PAS EXO-11-043

2011 Data, 5fb⁻¹

