Top-Quark Charge Asymmetry with a Jet Handle

(S.B., Susanne Westhoff, PRD 86, 094036)

Stefan Berge Johannes Gutenberg-University Mainz

- QCD predicts a charge asymmetry for top quark pair production in hadron-hadron scattering
- The corresponding forward-backward asymmetry has been measured at CDF and D0
- Discrepancy to SM prediction
 remains between 2-3 σ
- ➡ Sign of new Physics?
- Need to measure the charge asymmetry at the LHC

Parton Level	POWHEG	CDF 9.4 fb ⁻¹	exceeding SM prediction
Inclusive	6.6%	16.4 ± 4.5 %	2.2 σ
M _{tt} slope	(3.4 ± 1.2)10 -4 GeV -1	(15.2 ± 5)10 -4 GeV -1	2.3 σ
∆y slope	(10. ± 2.3)10 ⁻² GeV ⁻¹	(28.6 ± 8.5)10 ⁻² GeV ⁻¹	2.Ι σ

(CDF, arXiv 1211.1003)

 Problem: predicted SM charge asymmetry in inclusive top pair production at LHC is very small

Motivation

LO: no charge asymmetry

NLO: Charge asymmetry is generated due to virtual corrections (box diagrams) and real gluon emission diagrams (ISR-FSR interference)

Separating contributions with a gluon E^{cut}:

- virtual corrections generate positive asymmetry
- real emission diagrams contribute with negative asymmetry
- need to understand the tt+jet contribution especially in different phase space regions

tī+jet in the SM

Charge asymmetry of $q\bar{q} \rightarrow t\bar{t} + jet$ in QCD

Differential charge asymmetry at a fixed point in phase space:

$$\frac{\mathrm{d}\hat{\sigma}_{a}}{\mathrm{d}\cos\theta} = \frac{\mathrm{d}\hat{\sigma}_{t\bar{t}}}{\mathrm{d}\cos\theta}\Big|_{\theta=\theta_{t}^{t\bar{t}}} - \frac{\mathrm{d}\hat{\sigma}_{\bar{t}t}}{\mathrm{d}\cos\theta}\Big|_{\theta=\theta_{\bar{t}}^{t\bar{t}}}$$

 \bar{t} under $t \leftrightarrow \bar{t}$

00000

0000

 $d\hat{\sigma}_a \sim d^2_{abc} \cdot \text{antisymmetric}$

Charge asymmetry of $q\bar{q} \rightarrow t\bar{t} + g$ in QCD at LO

- \hat{A}_{C} [%], $\sqrt{\hat{s}} = 1 \text{ TeV}$ 400 400 -10 500 -20600 300 E_j [GeV] $M_{t\bar{t}\bar{t}}$ [GeV 700 200 800 100 900 1000 0 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ 0 π θ_i [rad]
- LO symmetric tt+g diagrams are IR divergent and collinear divergent
- a transverse momentum cut on the gluon momentum, e.g. p_T > 25 GeV, regulates both divergencies

 $M_{t\bar{t}}^2 \stackrel{\text{LO}}{=} \hat{s} \left(1 - 2E_i / \sqrt{\hat{s}}\right)$

the LO asymmetric tt+g diagrams,
 σ_a, are IR divergent

- → $\hat{A}_c = \hat{\sigma}_a / \hat{\sigma}_s$ is finite for small gluon energies
- A_c strongly tends to zero for $\hat{\theta}_j \to 0, \pi$
- → A_c can be as large as -40% for central gluons

Results: Tevatron

- proton-antiproton initial state
- Charge asymmetry corresponds to forwardbackward asymmetry

$$A_C^y = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)}, \quad \Delta y = y_t - y_{\bar{t}}$$

- ➡ Asymmetry is largest for central jets
- Cut on the jet should be applied in the partonic rest frame
- Combination of cuts results in largest asymmetry with moderate reduction of the cross section

	no cuts	$M_{t\bar{t}} \ge 450 \mathrm{GeV}$	$ \hat{y}_j \le 0.5$	$ \Delta y \ge 0.5$	$\begin{vmatrix} \hat{y}_j \le 1\\ \Delta y \ge 0.5 \end{vmatrix}$
$A_C^y \ [\%]$	-12.6	-17.0	-24.0	-19.1	-27.5
$\sigma_s [\mathrm{pb}]$	1.42	0.61	0.43	0.78	0.48
			-		

Results: LHC @ 8 TeV

- ➡ proton-proton symmetric initial state
- Charge asymmetry generated for large boost along the beam axis:

$$A_C^{|y|} = \frac{\sigma(\Delta|y| > 0) - \sigma(\Delta|y| < 0)}{\sigma(\Delta|y| > 0) + \sigma(\Delta|y| < 0)}$$

- ➡ Asymmetry is largest for central jets
- Cut on the jet should be applied in the partonic rest frame
- Combination of cuts results in largest asymmetry for a similar cross section

$$y_{t\bar{t}j} \stackrel{\text{LO}}{=} \frac{1}{2} \ln \frac{x_1}{x_2} = \frac{1}{2} \ln \frac{1+\beta}{1-\beta}$$

$\begin{array}{ c c c c c } & \text{no cuts} & \hat{y}_j \le 0.5 & \Delta y \ge 1 & - & \hat{y}_j \le 0.5 & \hat{y}_j \le 0.5 \le A \\ \hline \\ $	$\overline{\chi_{\eta}}$
	<u>- 1911</u>
$ A_C^{ g }[\%] -0.56 -1.30 -1.35 -1.62 -2.91 -4.04$	
$\sigma_s \text{ [pb]} 97.5 25.7 19.7 19.2 6.63 4.00$	

tī+jet with massive color-octet bosons

Lagrangian, contributing diagrams

$$\mathcal{L} = -g_s f_{abc} \left[\left(\partial_\mu G^a_\nu - \partial_\nu G^a_\mu \right) G^{b\mu} g^{c\nu} + G^{a\mu} G^{b\nu} \left(\partial_\mu g^c_\nu \right) - ig_s \bar{q}_i \gamma^\mu G^a_\mu T^a \left[g^i_V + \gamma_5 g^i_A \right] q_i$$

- G^a_μ massive gluon field
- ➡ q_V^i, q_A^i vector, axial-vector couplings of the massive gluons to quarks
- All combinations of diagrams can contribute to the cross sections σ_a and σ_s
- Asymmetry depends on the heavy gluon mass M_G, its width Γ_G and products of coupling combinations, e.g. g^q_Vg^t_V or g^q_Ag^t_A

Contributing diagrams

- Heavy gluon scenario, M_g = 2 TeV, consistent with top pair cross section measurements and di-jet
- Large M_{tt} cut enhances the cross section of the heavy color octet bosons with respect to SM cross section

$M_G = 2 \mathrm{TeV}$	V^+	V^{-}	A^+	A^-	VA^{++}	$VA^{}$	VA^{+-}
g_V^q	0.5	0.5	0	0	0.35	0.35	0.35
g_V^t	2	-2	0	0	1.5	-1.5	1.5
g^q_A	0	0	0.5	0.5	0.35	0.35	0.35
g_A^t	0	0	2	-2	1.5	-1.5	-1.5
Γ_G/M_G [%]	17.7	17.7	17.3	17.3	19.4	19.4	19.4

Results: LHC @ 8 TeV

$$\Delta A_C^{|y|} = A_C^{|y|,\text{tot}} - A_C^{|y|,\text{SM}}$$

- Large asymmetries are generated due to axial-vector couplings
- Also vector couplings generate additional asymmetry (not in tt inclusive at LO)
- Similar results for LHC 14, some additional phase space cuts may need to be applied

$M_{t\bar{t}}^{\min} = 1 \mathrm{TeV}$	$\Delta A_C^{ y } \ [\%]$
V^+, V^-	-0.22, -2.3
A^+, A^-	-6.7, +4.3
VA^{++}	+5.4
$VA^{}$	+8.9
VA^{+-}	-6.9

Results: LHC @ 8 TeV

- σ_a tends to zero for small gluon angles and vector couplings (QCD like)
- σ_a has a collinear divergency for small gluon angles and axialvector couplings
- opposite for symmetric cross
 section σ_s

QCD (black), g-G (solid) interference and G-G (dotted) interference for the massive gluon benchmarks V⁺ (green) and A⁺ (red)

Concluding Remarks

- Promising prospect to measure the charge asymmetry in tt+jet
- SM: Asymmetry is largest for central jets
- SM: Charge asymmetry can be enhanced by suitable phase space cuts
 - Tevatron: $|\hat{y}_j| \le 1, |\Delta y| \ge 0.5 \rightarrow A_C^y = -27.5\%$
 - LHC @ 8 TeV: for strong cuts up to -4%
- Heavy color octet vector bosons that can explain the Tevatron asymmetry can also generate large asymmetries at the LHC
- Differential distributions with respect to the jet scattering angle can give additional information about the coupling structure

