Dirac Gauginos and the 125 GeV Higgs

Florian Staub

BCTP Bonn

in collaboration with

Karim Benakli and Mark D. Goodsell ArXiV:1211.0552

6th Annual Helmholtz Alliance Workshop "Physics at the Terascale" DESY Hamburg, 04. December 2012

bctp

Introduction

• Two possible mass terms for gauginos λ :

Majorana: $M_M \lambda \lambda$, Dirac: $M_D \lambda \Psi$

(Ψ superfield in adjoint representation)

bctp

• Dirac mass terms are theoretical well motivated:

[Fayet; Hall&Randall; Polchinski&Susskind; Fox,Nelson&Weiner; Antoniadis,Benakli,Delgado&Quiros;...]

- Consequence of N = 2 SUSY
- Consistent with *R*-symmetry (in contrast to Majorana terms)

Introduction

• Two possible mass terms for gauginos λ :

Majorana: $M_M \lambda \lambda$, Dirac: $M_D \lambda \Psi$

(Ψ superfield in adjoint representation)

bctp

• Dirac mass terms are theoretical well motivated:

[Fayet; Hall&Randall; Polchinski&Susskind; Fox,Nelson&Weiner; Antoniadis,Benakli,Delgado&Quiros;...]

- Consequence of N = 2 SUSY
- Consistent with *R*-symmetry (in contrast to Majorana terms)
- Dirac masses have interesting phenomenological aspects
 - Suppressed cross section for colored SUSY particles

[Heikinheimo,Kellerstein,Sanz,1111.4322], [Kribs,Martin,1203.4821]

- Relaxed constraints from flavor physics [Kribs, Poppitz, Weiner, 0712.2039]
- Running sfermion masses independent of M_D [Goodsell,1206.6697]
- Extended Higgs sector

Introduction

• Two possible mass terms for gauginos λ :

Majorana: $M_M \lambda \lambda$, Dirac: $M_D \lambda \Psi$

(Ψ superfield in adjoint representation)

bctp

• Dirac mass terms are theoretical well motivated:

[Fayet; Hall&Randall; Polchinski&Susskind; Fox,Nelson&Weiner; Antoniadis,Benakli,Delgado&Quiros;...]

- Consequence of N = 2 SUSY
- Consistent with *R*-symmetry (in contrast to Majorana terms)
- Dirac masses have interesting phenomenological aspects
 - Suppressed cross section for colored SUSY particles

[Heikinheimo,Kellerstein,Sanz,1111.4322], [Kribs,Martin,1203.4821]

- Relaxed constraints from flavor physics [Kribs, Poppitz, Weiner, 0712.2039]
- Running sfermion masses independent of M_D [Goodsell,1206.6697]
- Extended Higgs sector \rightarrow topic of this talk

Minimal extension of the MSSM with Dirac Gauginos

[Benakli,Goodsell, 0811.4409]

Introduction

• MSSM extended by:

bctp

• gauge singlet (S), • $SU(2)_L$ triplet (T), • color octet (O)

Minimal extension of the MSSM with Dirac Gauginos

[Benakli,Goodsell, 0811.4409]

Introduction

MSSM extended by:

bctp

- gauge singlet (S), $SU(2)_L$ triplet (T), color octet (O)
- *R*-parity conserving superpotential

$$W = Y_{u}\hat{u}\hat{q}H_{u} - Y_{d}\hat{d}\hat{q}H_{d} - Y_{e}\hat{e}\hat{l}H_{d} + \mu\mathbf{H}_{u}\cdot\mathbf{H}_{d} + \lambda_{S}\mathbf{SH}_{u}\cdot\mathbf{H}_{d} + 2\lambda_{T}\mathbf{H}_{d}\cdot\mathbf{TH}_{u} + L\mathbf{S} + \frac{M_{S}}{2}\mathbf{S}^{2} + \frac{\kappa}{3}\mathbf{S}^{3} + M_{T}\mathrm{tr}(\mathbf{TT}) + M_{O}\mathrm{tr}(\mathbf{OO}) + W_{2} W_{2} = \lambda_{ST}\mathbf{S}\mathrm{tr}(\mathbf{TT}) + \lambda_{SO}\mathbf{S}\mathrm{tr}(\mathbf{OO}) + \frac{\kappa_{O}}{3}\mathrm{tr}(\mathbf{OOO})$$

Minimal extension of the MSSM with Dirac Gauginos

[Benakli,Goodsell, 0811.4409]

Introduction

MSSM extended by:

bctp

- gauge singlet (S), $SU(2)_L$ triplet (T), color octet (O)
- *R*-parity conserving superpotential

$$W = Y_{u}\hat{u}\hat{q}H_{u} - Y_{d}\hat{d}\hat{q}H_{d} - Y_{e}\hat{e}\hat{l}H_{d} + \mu\mathbf{H}_{u}\cdot\mathbf{H}_{d} + \lambda_{S}\mathbf{SH}_{u}\cdot\mathbf{H}_{d} + 2\lambda_{T}\mathbf{H}_{d}\cdot\mathbf{TH}_{u} + L\mathbf{S} + \frac{M_{S}}{2}\mathbf{S}^{2} + \frac{\kappa}{3}\mathbf{S}^{3} + M_{T}\mathrm{tr}(\mathbf{TT}) + M_{O}\mathrm{tr}(\mathbf{OO}) + W_{2} W_{2} = \lambda_{ST}\mathbf{S}\mathrm{tr}(\mathbf{TT}) + \lambda_{SO}\mathbf{S}\mathrm{tr}(\mathbf{OO}) + \frac{\kappa_{O}}{3}\mathrm{tr}(\mathbf{OOO})$$

- R-symmetry demands $W_2 = L = M_S = M_T = M_O = A_i = 0$
- We haven't extended the Higgs sector:

 \rightarrow *R*-symmetry must be broken in Higgs sector

Theoretical limits of the model

bctp

• MSSM without μ term (μ SSM): $\mu = \kappa = 0$, $B_{\mu} \neq 0$, $v_{S,T}$ small

 \rightarrow Demands very large $\lambda_T:$ in conflict with $\delta\rho$

Theoretical limits of the model

bctp

• MSSM without μ term (μ SSM): $\mu = \kappa = 0$, $B_{\mu} \neq 0$, $v_{S,T}$ small

 \rightarrow Demands very large $\lambda_T:$ in conflict with $\delta\rho$

- **2** MSSM in disguise: μ and B_{μ} present, $\kappa = 0$, $v_{S,T}$ small
- **(3)** Dynamical μ models: $\mu = 0$, $B_{\mu} \neq 0$ sizable v_S
- Dynamical μ and $B\mu$ models: $\mu = B_{\mu} = 0$, sizable v_S and κ

The Higgs sector

bctp

The CP even mass matrix in the basis (h, H, S_R, T_R^0) reads

$$\begin{pmatrix} M_Z^2 + \Delta_h s_{2\beta}^2 & \Delta_h s_{2\beta} c_{2\beta} & \Delta_{hs} & \Delta_{ht} \\ \Delta_h s_{2\beta} c_{2\beta} & M_A^2 - \Delta_h s_{2\beta}^2 & \Delta_{Hs} & \Delta_{Ht} \\ \Delta_{hs} & \Delta_{Hs} & \tilde{m}_S^2 & \lambda_S \lambda_T \frac{v^2}{2} \\ \Delta_{ht} & \Delta_{Ht} & \lambda_S \lambda_T \frac{v^2}{2} & \tilde{m}_T^2 \end{pmatrix}$$

$$\Delta_h = \frac{v^2}{2}(\lambda_S^2 + \lambda_T^2) - M_Z^2$$

$$\begin{split} \Delta_{hs} &= -2\frac{v_S}{v}\tilde{m}_{SR}^2 - \sqrt{2}\kappa\frac{v_S^2}{v}(A_{\kappa} + 3M_S) - 2\kappa^2\frac{v_S^3}{v}, \qquad \Delta_{ht} = -2\frac{v_T}{v}\tilde{m}_2 T R^2 \\ \Delta_{Hs} &= g'm_{1D}vs_{2\beta} - \lambda_S\frac{v(A_s + M_s)}{\sqrt{2}}c_{2\beta}, \qquad \Delta_{Ht} = -gm_{2D}vs_{2\beta} - \lambda_T\frac{v(A_T + M_T)}{\sqrt{2}}c_{2\beta} \end{split}$$

This matrix is diagonalized by real matrix S

The Higgs sector

bctp

The CP even mass matrix in the basis (h, H, S_R, T_R^0) reads

$$\begin{pmatrix} M_Z^2 + \Delta_h s_{2\beta}^2 & \Delta_h s_{2\beta} c_{2\beta} & \Delta_{hs} & \Delta_{ht} \\ \Delta_h s_{2\beta} c_{2\beta} & M_A^2 - \Delta_h s_{2\beta}^2 & \Delta_{Hs} & \Delta_{Ht} \\ \Delta_{hs} & \Delta_{Hs} & \tilde{m}_S^2 & \lambda_S \lambda_T \frac{v^2}{2} \\ \Delta_{ht} & \Delta_{Ht} & \lambda_S \lambda_T \frac{v^2}{2} & \tilde{m}_T^2 \end{pmatrix}$$
$$\Delta_h = \frac{v^2}{2} (\lambda_S^2 + \lambda_T^2) - M_Z^2$$

Light Higgs Mass

- New F-term contributions enhance the mass
- Mixing with heavier states reduce the mass

The Higgs sector

bctp

The CP even mass matrix in the basis (h, H, S_R, T_R^0) reads

$$\begin{pmatrix} M_Z^2 + \Delta_h s_{2\beta}^2 & \Delta_h s_{2\beta} c_{2\beta} & \Delta_{hs} & \Delta_{ht} \\ \Delta_h s_{2\beta} c_{2\beta} & M_A^2 - \Delta_h s_{2\beta}^2 & \Delta_{Hs} & \Delta_{Ht} \\ \Delta_{hs} & \Delta_{Hs} & \tilde{m}_S^2 & \lambda_S \lambda_T \frac{v^2}{2} \\ \Delta_{ht} & \Delta_{Ht} & \lambda_S \lambda_T \frac{v^2}{2} & \tilde{m}_T^2 \end{pmatrix}$$
$$\Delta_h = \frac{v^2}{2} (\lambda_S^2 + \lambda_T^2) - M_Z^2$$

Light Higgs Mass

- New F-term contributions enhance the mass (dominant)
- Mixing with heavier states reduce the mass (subdominant)
- \rightarrow Higgs mass of 125 GeV more natural than in the MSSM

Diphoton Rate

bctp

 $h \to \gamma \gamma$ might be enhanced in comparison to the SM expectation.

$$R_i \equiv \frac{\Gamma(h \to ii)}{\Gamma_{SM}(h \to ii)} = \left|\frac{A_{ii}}{A_{ii}^{SM}}\right|^2 \qquad \mu_{ii} \equiv \frac{\sigma(pp \to h)}{\sigma_{SM}(pp \to h)} \frac{BR(h \to ii)}{BR_{SM}(h \to ii)}$$

Diphoton Rate

bctp

 $h \to \gamma \gamma$ might be enhanced in comparison to the SM expectation.

$$R_i \equiv \frac{\Gamma(h \to ii)}{\Gamma_{SM}(h \to ii)} = \left|\frac{A_{ii}}{A_{ii}^{SM}}\right|^2 \qquad \mu_{ii} \equiv \frac{\sigma(pp \to h)}{\sigma_{SM}(pp \to h)} \frac{BR(h \to ii)}{BR_{SM}(h \to ii)}$$

 $\mu_{\gamma\gamma} \sim 1.5$ could be an effect of new, charged particles:

• charged Higgs: often in tension with $b \rightarrow s \gamma$

Higg sector

- Squarks influence also $\sigma(pp
 ightarrow h)$ [King,Mühlleitner,Nevzorov,Walz,1211.5074;...]
- Staus promising candidates, but might have problems with vacuum stability [Carena et.al, 1205.5842] [Kitahara, 1208.4792; Carena et.al, 1211.6136]
- Charginos: contribution small in MSSM but can be important in singlet and triplet extensions

[Schmidt-Hoberg, FS, 1208.1683] [Delgdo et.al, 1207.6596]

[[]Schmidt-Hoberg, FS, 1208.1683]

Chargino contributions

From the charginos mass matrix

bctp

$$M_{Ch} = \begin{pmatrix} M_T + \frac{v_S \lambda_{ST}}{\sqrt{2}} & m_{2D} + g_2 v_T & \lambda_T v c_\beta \\ m_{2D} - g_2 v_T & M_2 & g_2 v s_\beta / \sqrt{2} \\ -\lambda_T v s_\beta & g_2 v c_\beta / \sqrt{2} & \tilde{\mu} - \sqrt{2} \lambda_T v_T \end{pmatrix}$$

one gets

$$\begin{split} A_{\gamma\gamma}^{\text{Charginos}} \simeq & \frac{4}{3} \frac{1}{\sqrt{2}m_{D2}\tilde{\mu} - g_2 v^2 \lambda_T c_{2\beta}} \times \\ & \left[2g_2 \lambda_T v^2 (-c_{2\beta}S_{11} + s_{2\beta}S_{21}) + \lambda_S v m_{D2}S_{31} \right] . \\ \rightarrow R_{\gamma} = |S_{11} - 0.28 \cot \beta S_{21} - 0.15 \frac{v \lambda_S}{\mu} S_{31}|^2 \quad (\text{large } m_{D_2} \text{ limit}) \end{split}$$

Chargino contributions

Important for λ_T with large $\tan \beta$ or large λ_S and sizable mixing

Using in SARAH and SPheno

bctp

[FS,0806.0538,0909.2863]; [Porod,hep-ph/0301101], [Porod,FS,1104.1573]

- Support of Dirac Gauginos has been added to SARAH (public with version 3.2.0) [FS,1207.0906]
- SARAH generates Fortran code for a numerical evaluation with SPheno:
 - Complete mass spectrum calculated at 1-loop
 - Calculation of Higgs decays:
 - (S)lepton and VV^* final states at leading order
 - 2 (S)quark final states with dominant QCD corrections
 - 3 decay in $\gamma\gamma$ and gg at full one-loop and dominant NLO corrections
 - Calculation of $\delta \rho$, $b \rightarrow s \gamma$, g-2.

Setup

Used experimental constraints

bctp

• Higgs sector:

 $m_H = 125.8 \pm 0.4 \pm 0.4 \text{ GeV} (\text{CMS})$ $126.0 \pm 0.4 \pm 0.4 \text{ GeV} (\text{ATLAS})$

	CMS	ATLAS	Tevatron
$\mu_{\gamma\gamma}$	1.6 ± 0.4	1.8 ± 0.5	$3.62^{+2.96}_{-2.54}$
μ_{ZZ}	$0.8^{+0.35}_{-0.28}$	1.4 ± 0.6	-
μ_{WW}	0.74 ± 0.25	1.5 ± 0.6	$0.32^{+1.13}_{-0.32}$
μ_{bb}	$1.3^{+0.7}_{-0.6}$	$-0.4\pm0.4\pm0.4$	$1.56^{+0.72}_{-0.73}$
$\mu_{\tau\tau}$	0.72 ± 0.52	0.7 ± 0.7	0.1.0

Precision observables

$$\Delta \rho = (4.2 \pm 2.7) \times 10^{-4}.$$

$$R \equiv \frac{{\sf BR}(b\to s\gamma)_{\sf SUSY}}{{\sf BR}(b\to s\gamma)_{\sf SM}} \qquad \qquad R = [0.87, 1.31]$$

Setup

 $\tan\beta=50,\,\lambda_T=0.7$

Enhanced diphoton rate

bctp

- Light charginos needed, but bound relaxed for larger m_{D2}
- $\mu_{bb} \simeq 1$ possible for $\mu_{\gamma\gamma} > 1.5$

Results including all constraints

bctp

Contour lines for constant $\mu_{\gamma\gamma}$, dashed line: $\mu_{WW} = 1.0 \pm 0.3$, red line: in agreement with all data

Results including all constraints

bctp

Main chargino contributions

- large an eta and λ_T (left)
- significant mixing in Higgs sector (right)

bctp

- Models with Dirac instead of Majorana mass terms are theoretical well motivated and have interesting, phenomenological aspects
- A Higgs mass of 125 GeV is more natural than in the MSSM and also the diphoton rate can be enhanced due to light charginos or stops
- SARAH and SPheno support now Dirac gauginos and give the possibility for an easy and precise study of these models