How Difficult Is It To Conserve R-parity In The B - L-Extended MSSM?

Ben O'Leary in collaboration with José Eliel Camargo, Werner Porod, and Florian Staub

Julius-Maximilians-Universität Würzburg

DESY Hamburg, December 4th, 2012

What can we say about supersymmetry and R-parity?

Supersymmetry and *R*-parity The BLSSM

What question can we reasonably answer?

If we find SUSY, will we find R-parity?

▶ theoretically justified or just phenomenologically necessary?

B − L symmetry
$$\Rightarrow$$
 R-parity
• $(-1)^{(3B+L+2s)} = (-1)^{(3(B-L)+2s)}$ for integer 2L

Minimal $U(1)_{B-L}$ gauge extension?

• extra photon with B - L coupling to SM

or

▶ sneutrino VEVs \Rightarrow *R*-parity-violation...

Supersymmetry and *R*-parity The BLSSM

The BLSSM

The Minimal *R*-parity-conserving $U(1)_{B-L}$ -gauged Supersymmetric Standard Model

(Khalil, Masiero, arXiv:0710.3525, PLB; Perez, Spinner, arXiv:1005.4930, PRD)

• MSSM + $U(1)_{B-L}$ + 3 × $\hat{\nu}_R$ + $\hat{\eta}$ + $\hat{\bar{\eta}}$

 $\hat{\eta}, \hat{\bar{\eta}}$:

- ► SM gauge singlets, $B L = \pm 2 \times \nu_R \Rightarrow$ bileptons
- VEVs break $U(1)_{B-L} \Rightarrow Z'$ vector boson

$$\mathcal{W} = Y_{u}^{ij} \hat{U}_{i} \hat{Q}_{j} \hat{H}_{u} - Y_{d}^{ij} \hat{D}_{i} \hat{Q}_{j} \hat{H}_{d} - Y_{e}^{ij} \hat{E}_{i} \hat{L}_{j} \hat{H}_{d} + \mu \hat{H}_{u} \hat{H}_{d} + Y_{\nu}^{ij} \hat{L}_{i} \hat{H}_{u} \hat{\nu}_{j} - \mu' \hat{\eta} \hat{\eta} + Y_{x}^{ij} \hat{\nu}_{i} \hat{\eta} \hat{\nu}_{j}$$

 $\eta, \bar{\eta}$ VEVs \Rightarrow Majorana ν_R ! (preserves *R*-parity: $\Delta L = 2$) $M_0, M_{1/2}, A_0, \tan\beta, \tan\beta', m_{Z'}, \operatorname{sgn}(\mu, \mu')$ constraints possible

Supersymmetry and *R*-parity The BLSSM

Phenomenology of the BLSSM

- Massive Z' at LHC? Covered in talk by Manuel Krauß (Krauß, BOL, Porod, Staub, arXiv:1206.3513, PRD)
- ► Gauge kinetic mixing: large effects despite tiny Z-Z' mixing (BOL, Porod, Staub, arXiv:1112.4600, JHEP)
- ▶ Dark matter: ν̃ (CP-even/-odd), Ž̃'/η̃/η̃ − χ̃⁰₁ (Basso, BOL, Porod, Staub, arXiv:1207.0507, JHEP)
- ► Less tuning for $m_h = 125$ GeV, large $h \to \gamma \gamma$ (Basso, Staub, arXiv:1210:7946)
- $\tilde{\nu}$ VEVs? Camargo, BOL, Porod, Staub arXiv:1212.???? (compared with Perez, Spinner, arXiv:1005.4930, PRD)

Why is it difficult to say whether the model conserves R-parity or not?

Even coupled polynomial equations are hard

Consider $V = x^4 - ax^2 + y^4 - by^2 + cxy$:

• $\partial V/\partial y = 0$ is a simple cubic in y

•
$$y = A + B \sqrt[3]{\left(C + x + D \sqrt[2]{\left[E + Fx + x^2\right]}\right)}$$

• ...

So how about a set of ten complex tadpole equations in ten complex scalars?

The usual approach

- We know that we want $m_Z = 91 \text{ GeV}$
- ► Tadpoles can be easy if VEVs are input and some Lagrangian parameters are output
- \Rightarrow engineer extremum at $m_Z = 91 \text{ GeV}$
 - ▶ Only know at best that it's a *local* minimum
 - ▶ There could easily be deeper other minima
 - ▶ Finding the others to check = back to the old problem

Are there methods to find all the minima?

Methods for finding all the minima Homotopy continuation

Algorithms

Gröbner bases:

- ▶ Decomposition of system using fancy algebra
- Has been used to investigate NMSSM (Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)
- ▶ Computationally expensive, especially in terms of RAM

Homotopy continuation:

- ► Has been used to investigate SM with up to 5 extra scalars (Maniatis, Mehta, arXiv:1203.0409, EPJ+)
- \blacktriangleright Used public program HOM4PS2: fast enough for BLSSM
 - ► 20 minutes for tadpole equation system allowing 10 VEVs: $H_d, H_u, \eta, \bar{\eta}, 3 \times \tilde{\nu}_L, 3 \times \tilde{\nu}_R$

Methods for finding all the minima Homotopy continuation

Homotopy continuation

Homotopy continuation:

- Gradual deformation of simple system of equations into target system
- ► Simple system chosen with *n* known roots, where *n* is maximum number of roots of target system
- Positions of roots updated iteratively from known values from last step

How often are there deeper other minima, and what are they like?

Stability of *R***-parity-conserving vacua** Parameter dependences Comments

Result of scans

We performed two kinds of scan:

Parameter	Common to both			
$M_{1/2}/$ GeV	100 - 1000	Fixed $Y_{\nu}^{ij} = 10^{-5} \delta^{ij}$		
$M_0/{ m GeV}$	100 - 3000			
A_0 / GeV	-3000 - 3000	Parameter	Democratic	Hierarchical
$\tan\beta$	3 - 45	Y_{x}^{11}	0.05 - 0.6	fixed 10^{-3}
$m_{Z'}/\text{GeV}$	1500 - 3000	Y_{x}^{22}	0.05 - 0.6	fixed 10^{-2}
$\tan \beta'$	1.0 - 1.5	Y_{x}^{33}	0.05 - 0.6	0.1 - 0.6

- \blacktriangleright ~3000 democratic scan points, 87% $R\text{-}\mathrm{parity}\text{-}\mathrm{conservation}$
- ▶ ~2000 hierarchical scan points, 45% *R*-parity-conservation

Stability of *R*-parity-conserving vacua **Parameter dependences** Comments

Is there a dependence on M_0 or $M_{1/2}$?

(masses in TeV)

Stability of *R*-parity-conserving vacua **Parameter dependences** Comments

Is there a dependence on the Yukawa couplings?

Trilinear bilepton-sneutrino terms can overcome sneutrino mass-squared terms.

What are our results?

Parameter dependences

Is the soft SUSY-breaking sneutrino mass-squared critical?

$(\text{masses-squared in TeV}^2)$

 $/ U(1)_{B-L}$ unbroken (blue)

There are both *R*-parity-conserving and *R*-parity-violating parameters points for *both* signs of soft SUSY-breaking sneutrino mass-squared! (There are obvious trends, though.)

Stability of *R*-parity-conserving vacua Parameter dependences **Comments**

Things that I don't have time to get into

- ▶ We have checked full one-loop potential
 - \blacktriangleright some R-parity natures change, but not many
 - occasional problem: unbroken $U(1)_{B-L}$ due to breaking terms small compared to loop corrections
- ▶ We have estimated tunneling times
 - ► typically TeV-scale energy barriers, energy depth differences \Rightarrow roughly tunneling times of (factors of $16\pi^2 \ etc.$)/TeV \ll age of Universe

Summary and conclusions

Summary and outlook

Minimally extending MSSM by $U(1)_{B-L}$ has many interesting consequences:

- ▶ Theoretically motivated.
- ▶ Rich phenomenology.
- \blacktriangleright Natural explanation for R-parity, but...
- ► Existence of *R*-parity-conserving *local* minimum not sufficient to claim that parameter point has *R*-parity-conserving vacuum!
- ► There are parameter regions where *R*-parity is safe, regions where *R*-parity is rare.
- ► Process being automated in new version of SARAH- coming soon!

Thank you for your attention!

Backup slides

Categorization	Hierarchical scan		Democratic scan	
total	2302		3158	
	tree level	one-loop level	tree level	one-loop level
"RPC"	1981	1039	3008	2754
"RPV"	321	358	150	131
"unbroken"	0	898	0	267

Number of parameter points in the various categories. All of the parameter points from the hierarchical scan categorized as "unbroken" broke $SU(2)_L$ without breaking $U(1)_{B-L}$ or *R*-parity, while 250 of the 267 parameter points from the democratic scan did so, with the remaining 17 breaking $U(1)_{B-L}$ without breaking $SU(2)_L$. Not all parameter points that are "RPC" at the one-loop level were "RPC" at tree level, and likewise for the "RPV" category. Filiviez Perez, Spinner, arXiv:1005.4930, PRD:

 \blacktriangleright more than one large $Y_x \Rightarrow m_\eta^2, m_{\bar\eta}^2$ driven negative faster than $m_{\tilde\nu}^2$

We agree:

► less difficult to find calculable points in democratic scan

Filiviez Perez, Spinner, arXiv:1005.4930, PRD:

- $m_{\tilde{\nu}}^2 > 0 = R$ -parity-conservation
- $m_{\tilde{\nu}}^2 < 0 = R$ -parity-violation
- Y_x hierarchical \Rightarrow *R*-parity-violation
- Y_x not hierarchical \Rightarrow *R*-parity-conservation

We disagree:

- $\tilde{\nu}$ masses-squared combination of $m_{\tilde{\nu}}^2 + \mu' \times$ bilepton VEV
- trilinear terms can overwhelm positive $m_{\tilde{\nu}}^2$
- ▶ Y_x not only parameters that drive $U(1)_{B-L}$ -breaking

- $V^{1L} = V^{TL} + STr[m_i^4(\log(m_i^2/Q^2) 3/2)]/(64\pi^2)$
- ▶ Different schemes checked

- Γ volume = $Ae^{-B/\hbar}(1 + \mathcal{O}(\hbar))$
- \blacktriangleright A is solitonic solution, should be \sim energy scale of potential
- $B \sim ([surface tension]/[energy density difference])^3$