Measurements of the **Differential Top-Quark Pair Production Cross Sections in pp Collisions** at 7 TeV with CMS

CMS TOP-11-013, arXiv:1211.2220 [hep-ex]

Jörn Lange Universität Hamburg

For the CMS Collaboration

6th Annual Workshop of the Helmholtz Alliance, Hamburg 3 December 2012

GEFÖRDERT VOM

Bundesministerium und Forschung

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Introduction and Motivation

- First comprehensive measurement of differential tt cross sections
 Previously only limited set of variables: p_T(t) (D0, arXiv:1001.1900); m(tt) (CDF, 0903.2850); p_T(tt), y(tt), m(tt) (ATLAS, 1207.5644)
- 11 differential variables of different objects:
 - Lepton: $p_T(\ell), \eta(\ell)$
 - Lepton pair: $p_T(\mathcal{U})$, $m(\mathcal{U})$
 - b-jet: p_T(b), η(b)
 (only dilepton)
 - Top quark: p_T(t), y(t)
 - Top quark pair: p_T(tt̄), y(tt̄), m(tt̄)
- ℓ +jets and dilepton (ℓ = e, μ) decay channels
- Motivation:
 - Test of pQCD at LHC energy scale
 - Sensitive to QCD parameters (PDFs, α_s)
 - Better understanding of top background distributions for BSM searches
 - Sensitive to new physics in top final states -

UΗ

Η.

Dataset and Simulation

- 2011 CMS data: 5 fb⁻¹ of 7 TeV pp collisions
- Simulation
 - MADGRAPH (tt, V+Jets)
 - POWHEG (single top)
 - PYTHIA (QCD, VV)
- About 9 additional interactions / bunch crossing
 - Corrections for pile-up interactions applied
 - Simulation reweighted to match pile-up distribution in data
- Channel-optimised triggers
 - µ+jets: Single iso. muon
 - e+jets: Single iso. electron + TriJet
 - Dilepton: Dilepton according to channel (μμ, ee, μe)

Event Selection

<i>ℓ+Jets</i>	Dilepton
 Exactly 1 iso. lepton $p_T > 30 \text{ GeV}, \eta < 2.1$ Veto leptons with looser criteria 2 4 jets (PF, Anti-k_T algorithm, R=0.5) $p_T > 30 \text{ GeV}, \eta < 2.4$ 2 b-tagged jets (CSVM) 	 2 oppositely charged leptons $p_T > 20 \text{ GeV}, \eta < 2.4$ QCD veto: m(ll) > 12 GeV ≥ 2 jets (PF, Anti-k_T algorithm, R=0.5) $p_T > 30 \text{ GeV}, \eta < 2.4$ ≥ 1 b-tagged jet (CSVL)
 9076/10766 events in e/µ+jets 93% tt, 4% single top, 3% other 	 In ee/µµ Z veto: not 76 < m_{II} < 106 GeV E_{T,miss} > 30 GeV
 Background from simulation CMS, 5.0 fb¹ at vs = 7 TeV ^{of} ^{of} ^{of} ^{of} ^{(+/++ Jets Combined} ⁽⁻⁾ ^{Data} ⁽⁺⁾ ⁽⁺	 2632/3014 events in ee/μμ 82% tt, 15% Z/γ+jets, 3% other 7408 events in eμ 94% tt, 4% single top, 2% other Z/γ+jets background from Z mass control region, other from simulation

υн

Kinematic Event Reconstruction

<i>ℓ+Jets</i>	Dilepton
 Kinematic fit 	 Kinematic reconstr. similar to MWT
 Vary 4-momenta of l, jets, v 	• Underconstrained system due to 2 v
 Constraints m_W = 80.4 GeV m_t = m_t Neutrino: E_{T,miss} (initially p_Z=0) Jets: 5 leading jets considered, use b-tag information for b-jet association Permutation with minimum χ² taken Permutation with minimum χ² taken 	 Constraints m_W = 80.4 GeV p_{X,y}(v1) + p_{X,y}(v2) = E_{T,miss x,y} m_t = m_t = fixed (vary m_t in 1 GeV steps betw. 100-300 GeV) Solution with b-tagged jets and best E_v wrt. to simulated spectrum preferred

υн

Normalised Differential Cross Section

- xⁱ: Event yield corrected for background, efficiency, acceptance and migration
 - Migration limited by choosing purity p^i , stability $s^i \ge 0.4-0.5$
 - Regularised unfolding method
 - Minimum-global-correlation criterion to determine regularisation level
- Δ_X^i : Bin width of bin i; L: integrated luminosity
- Normalised to unity using inclusive cross section σ

$$p^i = rac{N^i_{rec\&gen}}{N^i_{rec}}$$

 $s^i = rac{N^i_{rec\&gen}}{N^i_{gen}}$

UН

Phase Space and Correction Level

Decay products (lepton, b-jet)

- Directly accessible
- Corrected only for detector effects

\rightarrow particle level

- Restricted to visible phase space:
 - $p_T^{\text{jets}} > 30 \text{ GeV}, \eta^{\text{jets}} < 2.4$
 - $p_T^{lep} > 20 (30) \text{ GeV}, \eta^{lep} < 2.4 (2.1)$ for dilepton (*l*+Jets)

\rightarrow as model independent as possible

• Top quark, tt system

- Reconstructed quantities
- Corrected for detector AND hadronisation effects
 → parton level
- Extrapolated to full phase space

\rightarrow as close to theory as possible

Systematic Uncertainties

Normalised cross sections

- \Rightarrow Correlated normalisation uncertainties cancel
 - (e.g. luminosity, flat SF, etc.)
- \Rightarrow Only shape uncertainties contribute

Source	Systematic uncertainty (%)	
	ℓ+jets	dileptons
Trigger efficiency	0.5	1.5
Lepton selection	0.5	2.0
Jet energy scale	1.0	0.5
Jet energy resolution	0.5	0.5
Background	3.5	0.5
b tagging	1.0	0.5
Kin. reconstruction	_	0.5
Pileup	0.5	0.5
Fact./renorm. scale	2.0	1.0
ME/PS threshold	2.0	1.0
Hadronisation	2.0	2.0
Top-quark mass	0.5	0.5
PDF choice	1.5	1.0

Results – Lepton p_T and η

Lepton p_T

<u>Lepton ղ</u>

- Compared to different model predictions:
 - MadGraph
 - MC@NLO
 - POWHEG
- Horizontal bin-centrecorrections wrt. MadGraph

- For all lepton variables: bin widths statistically limited (good resolution)
- Good agreement between data and predictions
- For all distributions: all channels very consistent
- For almost all distributions: different model predictions very similar

υн

郱

Lepton Pair p_T

Lepton Pair m^u

 Data agrees better with MC@NLO/POWHEG (spin correlations considered) than with MadGraph (not considered)

UН

闬

Results – **b-Jet p_T and** η

<u>b-Jet p</u>_T

<u>b-Jet η</u>

 Good agreement between data and predictions (slightly softer p_T spectrum in data than predicted)

UН

闬

- All top and tt̄ variables: obtained by kinematic reconstruction algorithms ⇒ bin widths limited by migration effects due to lower resolution
- Measured p_T spectrum slightly softer than predicted by MC models
- In good agreement with approx. NNLO calculation

UΗ

闬

Results – Top Quark Pair p_T and Rapidity

<u>tt p</u>_T

<u>tt y</u>

Good agreement between data and predictions

Results – Top Quark Pair m^{tt}

<u>ℓ+jets</u>

q

1+

Dilepton

- Sensitive to high-mass resonances
 - Narrow \rightarrow bump
 - Wide \rightarrow distortion of shape in wider range
- Good agreement between data and predictions

UН

Conclusions

- First comprehensive measurement of differential tt cross sections at 7 TeV with 5 fb⁻¹ in 5 different *l*+jets and dileptonic channels
- Variety of 11 kinematic variables of different objects (lepton, lepton pair, b-jet, top, top pair)
- Normalised using incl. cross section
 ⇒ precise measurement (5-10% uncertainty)
- Good agreement between data and various predictions

 \Rightarrow Top kinematics well described by standard model \Rightarrow No indications of new physics

Outlook

UН

Υï

- Measure at 8 TeV (see talk by Ivan Asin Cruz)
- Study the use for PDF fits
- Interested in more variables...?
 ⇒ Contact us ☺

CMS TOP-11-013 arXiv:1211.2220 [hep-ex]

Reconstructed top and tt distributions

- Good agreement between data and simulation
- Slightly softer p_T(top) spectrum in data compared to simulation (see final results)