Studies of Systematic Uncertainties with Profile Likelihood Fits in the Context of a W-Boson Polarisation Measurement at ATLAS

Ph. Stolte Supervisors: K. Kröninger, A. Quadt Universität Göttingen

 6^{th} Annual Workshop of the Helmholtz Alliance: December 4, 2012

Introduction	The ATLAS Experiment	Aspects of PLFs	Results	Conclusion
Motivatior	ı			

Why are profile likelihood fits so interesting?

- Meas. of most top quark properties limited by systematic effects
- Reduce systematic uncertainties by using profile likelihood fits

What are characteristics of profile likelihood fits used here?

Fit parameters are used for certain sources of systematic variation
 ⇒ Nuisance parameters: Adjust size of systematics using data

Aim of analysis:

- ⇒ Explore *potential* and study important *features* of profile likelihood fits
- \Rightarrow Illustrate *setup* of fitting procedure

Application:

- \Rightarrow Test *Wtb* vertex structure
- \Rightarrow Measure the W helicity fractions F_0, F_L and F_R

The Top Quark and Its Decay

The top quark:

- Enormous mass of about: $m_t = 173.5 \pm 0.6 \pm 0.8 \frac{\text{GeV}}{c^2}$ Assumed to carry charge $Q = \frac{2}{3}e$ and spin $s = \frac{1}{2}$, short lifetime, no hadronisation

Top quark decays:

- Decay almost exclusively into b quark and W boson
- b quarks hadronise to b jets \Rightarrow b-tagging
- W boson can decay hadronically or leptonically

Measure *W* helicity fractions in muon+jets channel:

- Signature: 1 isolated charged μ , $E_{\rm T}^{\rm miss}$ due to ν , \geq 4 high- $p_{\rm T}$ jets, \geq 1 b-tag
- Background processes: mostly W+jets, single top and QCD multijet production

Possible helicity states:

- W boson: spin s = 1 leads to 3 possibilities for spins in t rest frame

Calculation of the helicity fractions: (W rest frame)

- Defined as: $F_0 = \frac{\Gamma(t \to W_0 b)}{\Gamma(t \to W b)}$ $F_L = \frac{\Gamma(t \to W_L b)}{\Gamma(t \to W b)}$ $F_R = \frac{\Gamma(t \to W_R b)}{\Gamma(t \to W b)}$
- Angular distribution of particles originating from top decay:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \sin^2 \theta^* F_0 + \frac{3}{8} (1 - \cos\theta^*)^2 F_L + \frac{3}{8} (1 + \cos\theta^*)^2 F_R$$

- NNLO QCD calculations yield:

 $F_0 = 0.687(5)$ $F_L = 0.311(5)$ $F_R = 0.0017(1)$

- ATLAS one of four detector experiments located at the LHC at CERN
- 44 m long, 25 m in diameter, weight of \approx 7000 t, four main parts:

Inner detector (ID):

- Immersed in 2 T magn. field
- Pixel detector
- Semi-conductor tracker
- Trans. rad. tracker

Calorimeter system:

- Two sampling calorimeters:
- EM and hadronic cal. system

Muon spectrometer:

- 4 different types of tubes/chambers
- μ detection based on magnetic deflection of tracks in toroid magnets $\mbox{Magnet System:}$
- ID surrounded by solenoid, outside calorimeters outer toroidal magn. field
- 3 level trigger system used to select signal and reject background events

Profile Likelihood (PL)

Definition of PL:

- $L_{\text{prof}}(\vec{x}|\vec{\alpha}) = \sup_{\vec{k}} \mathcal{L}(\vec{x}|\vec{\alpha},\vec{k})$
- PL maximised with respect to \vec{k}
- with:
 - $\vec{\alpha}$ vec. par. of interest
 - \vec{k} vec. of nuisance parameters
 - \vec{x} contains *n* independent observables

Graphical representation:¹

- Usually minimise negative logar. likelihood
- Contour plot: 2D problem
- Bottom plot: Neg. log. PL
- Asterisk: Optimal param. choice

¹A. Raue et al., IET Syst. Biol., 5:120-130, 2011

Template Fits

Template fits:

- ...based on idea of adding nominal templates for sig./bkg. contrib. \Rightarrow H_S and H_B
- ...fitted by normalisation parameters \vec{N}
- Templates obtained from MC simulations and auxiliary measurements
- \Rightarrow Gain number of sig./bkg. events
- Write in condensed form:

 $H_{sum}(\vec{N}_S,\vec{N}_B) = H_S(\vec{N}_S) + H_B(\vec{N}_B)$

Idea: Fit distribution H_{sum} to data/pseudo-data H_{data} (Poisson model)

Likelihood function: Minimise negative logarithmic likelihood

$$-\ln \mathcal{L}_{\vec{N}_{S},\vec{N}_{B}} = \sum_{m=1}^{N_{\text{bins}}} \left(H_{\text{sum},m} - H_{\text{data},m} \cdot \ln H_{\text{sum},m} \right) + \text{const.}$$

Profile Likelihood Analyses with Template Fits

Fit parameters and templates:

- PL fits based on template fits:
- \Rightarrow Nominal templates for sig./bkg. contributions
- \Rightarrow ...fitted by normalisation parameters \vec{N}
- To adjust size of systematic effects:
- \Rightarrow Templates for syst. uncertainties added to fit
- $\Rightarrow \pm 1\sigma$ -variations for all systematics
- \Rightarrow Use nuisance parameters \vec{k} to estimate corresponding effects
- Nuisance parameters:
- \Rightarrow Gaussian-distributed
- \Rightarrow Nominal value: 0, $\pm 1\sigma$ -variation: ± 1
- $\pm 1\sigma$ -templates: Absolute numbers and shape change

Philipp Stolte

Interpolation/Morphing

Idea of morphing:

- During fit: Perform interpolation/morphing step
- Shape of templates morphed from: $H_{-1\sigma}$ to $H_{\rm nom}$ to $H_{+1\sigma}$

- Morphing controlled by underlying nuisance parameters
- Morphing step performed for all nuisance parameters using all signal/bkg. contributions

Aspects of PLFs

Results

Conclusion

Interpolation Methods

if $|k_j| > 1$ use linear interpolation so that resulting interp. function is continuous

- Quadratic fit using all data points per bin: nominal, $\pm 1\sigma$, $\pm 2\sigma$, $\pm 3\sigma$...resulting fitted function serves as interpolation function
- Note: j refers to the corresponding source while i denotes bin of the templates

PLFs to Measure the W Boson Polarisation

Idea: Fit MC distribution H_{sum} to data/pseudo-data H_{data}

Fit parameters and templates:

- cos θ^* -distributions as input templates with 15 bins
- Fit parameters: 3 signal parameters for helicity states: N_0 , N_L , N_R $\stackrel{\scriptscriptstyle \wedge}{=} \#$ of events
 - 3 bkg. parameters N_B for Wjets, QCD, RemBkg
 - Due to morphing step: histos H depend on k
- Signal samples: Consider selection efficiencies $\vec{\varepsilon}_{N_s}$

$$\begin{split} H_{S}(\vec{k},\vec{N}_{S},\vec{\varepsilon}_{N_{S}}) &= H_{N_{0}}(\vec{k}) \cdot N_{0}\varepsilon_{N_{0}} + H_{N_{L}}(\vec{k}) \cdot N_{L}\varepsilon_{N_{L}} + H_{N_{R}}(\vec{k}) \cdot N_{R}\varepsilon_{N_{R}} \\ H_{B}(\vec{k},\vec{N}_{B}) &= H_{Wjets}(\vec{k}) \cdot N_{Wjets} + H_{QCD}(\vec{k}) \cdot N_{QCD} + H_{RemBkg}(\vec{k}) \cdot N_{RemBkg}(\vec{k}) - H_{RemBkg}(\vec{k}) + H_{RemBkg}(\vec{k}) - H_{REmBkg}(\vec{k}$$

$$H_{\text{sum}}(\vec{k},\vec{N}_S,\vec{N}_B,\vec{\varepsilon}_{N_S}) = H_S(\vec{k},\vec{N}_S,\vec{\varepsilon}_{N_S}) + H_B(\vec{k},\vec{N}_B)$$

11/22

$$-2\ln L_{\vec{N}_{S},\vec{N}_{B},\vec{k}}^{\text{prof}} = 2\sum_{m=1}^{N_{\text{bins}}} \left(H_{\text{sum},m} - H_{\text{data},m} \cdot \ln H_{\text{sum},m} \right) + \sum_{i=1}^{N_{\text{bins}}} \frac{(N_{B,i} - N_{B,\text{exp},i})^{2}}{\sigma_{N_{B,\text{exp},i}}^{2}} + \sum_{j=1}^{N_{\text{prof}}} k_{j}^{2} + \text{const.}$$

PLFs to Measure the W Boson Polarisation

Idea: Fit MC distribution H_{sum} to data/pseudo-data H_{data}

Fit parameters and templates:

- cos θ^* -distributions as input templates with 15 bins
- Fit parameters: 3 signal parameters for helicity states: N_0 , N_L , N_R
 - 3 bkg. parameters N_B for Wjets, QCD, RemBkg

 $\dot{a} \doteq \#$ of events

- Due to morphing step: histos H depend on k
- Signal samples: Consider selection efficiencies $\vec{\varepsilon}_{N_s}$
- Summarise signal and bkg templates:

$$\begin{aligned} H_{S}(\vec{k},\vec{N}_{S},\vec{\varepsilon}_{N_{S}}) &= H_{N_{0}}(\vec{k}) \cdot N_{0}\varepsilon_{N_{0}} + H_{N_{L}}(\vec{k}) \cdot N_{L}\varepsilon_{N_{L}} + H_{N_{R}}(\vec{k}) \cdot N_{R}\varepsilon_{N_{R}} \\ H_{B}(\vec{k},\vec{N}_{B}) &= H_{Wjets}(\vec{k}) \cdot N_{Wjets} + H_{QCD}(\vec{k}) \cdot N_{QCD} + H_{RemBkg}(\vec{k}) \cdot N_{RemBkg} \end{aligned}$$

- Write in condensed form:

$$H_{\text{sum}}(\vec{k},\vec{N}_S,\vec{N}_B,\vec{\varepsilon}_{N_S}) = H_S(\vec{k},\vec{N}_S,\vec{\varepsilon}_{N_S}) + H_B(\vec{k},\vec{N}_B)$$

11/22

1

$$-2\ln L_{\vec{N}_{S},\vec{N}_{B},\vec{k}}^{\text{prof}} = 2\sum_{m=1}^{N_{\text{bins}}} \left(H_{\text{sum},m} - H_{\text{data},m} \cdot \ln H_{\text{sum},m}\right) + \sum_{i=1}^{N_{\text{bins}}} \frac{(N_{B,i} - N_{B,\exp,i})^2}{\sigma_{N_{B,\exp,i}}^2} + \sum_{j=1}^{N_{\text{prof}}} k_j^2 + \text{const.}$$

PLFs to Measure the W Boson Polarisation

Idea: Fit MC distribution H_{sum} to data/pseudo-data H_{data}

Fit parameters and templates:

- cos θ^* -distributions as input templates with 15 bins
- Fit parameters: 3 signal parameters for helicity states: N_0 , N_L , N_R
 - 3 bkg. parameters N_B for Wjets, QCD, RemBkg

 $\big\} \stackrel{\scriptscriptstyle }{=} \#$ of events

- Due to morphing step: histos H depend on \vec{k}
- Signal samples: Consider selection efficiencies $\vec{\varepsilon}_{N_s}$
- Summarise signal and bkg templates:

$$\begin{aligned} H_{S}(\vec{k}, \vec{N}_{S}, \vec{\varepsilon}_{N_{S}}) &= H_{N_{0}}(\vec{k}) \cdot N_{0} \varepsilon_{N_{0}} + H_{N_{L}}(\vec{k}) \cdot N_{L} \varepsilon_{N_{L}} + H_{N_{R}}(\vec{k}) \cdot N_{R} \varepsilon_{N_{R}} \\ H_{B}(\vec{k}, \vec{N}_{B}) &= H_{W_{jets}}(\vec{k}) \cdot N_{W_{jets}} + H_{QCD}(\vec{k}) \cdot N_{QCD} + H_{RemBkg}(\vec{k}) \cdot N_{RemBkg} \end{aligned}$$

- Write in condensed form:

$$H_{\text{sum}}(\vec{k},\vec{N}_S,\vec{N}_B,\vec{\varepsilon}_{N_S}) = H_S(\vec{k},\vec{N}_S,\vec{\varepsilon}_{N_S}) + H_B(\vec{k},\vec{N}_B)$$

Likelihood function:

11/22

$$-2 \ln L_{\vec{N}_{S},\vec{N}_{B},\vec{k}}^{\text{prof}} = 2 \sum_{m=1}^{N_{\text{bins}}} \left(H_{\text{sum},m} - H_{\text{data},m} \cdot \ln H_{\text{sum},m} \right) + \sum_{i=1}^{N_{\text{bkg}}} \frac{(N_{B,i} - N_{B,\text{exp},i})^{2}}{\sigma_{N_{B,\text{exp},i}}^{2}} + \sum_{j=1}^{N_{\text{prof}}} k_{j}^{2} + \text{const.}$$

- Last sum *penalty term*: Gaussian constraint on k_i with $\mu = 0$, $\sigma = 1$
- Second sum: Gaussian constraint on $N_{B,i}$ with $\mu = N_{B,exp,i}$, $\sigma_i = \sigma_{N_{B,exp,i}}$

Studying Different Interpolation Methods

Approach:

- Use test systematic uncertainty: JES
- JES not split into components, as first test: toy example
- Use variations up to $\pm 3\sigma$

Evaluating interpolation methods:

- Linear: $k_j = \pm 1$ does not yield $H_{\pm 1,ij}$
- Quadratic & piecewise linear: if $|k_j| > 1$ discrepancies between histogram values and interp. curves
- Quadratic fit: Deviations small!
- $\chi^2/{\rm ndf}{\rm -values}$ emphasise observation

Comparison between Fitting/Interpolation Methods I

Approach:

- Estimation of systematic effects: Compare PL fit with simple delta method
- Use different interpolation methods for PL fit
- Pseudo-data based on SM expectation: $F_0 = 0.7$, $F_L = 0.3$, $F_R = 0.0$; assume k = 0

• Template fit:

- Estimate systematic uncertainties using ensemble tests!
- Perform 1,000 pseudo-experiments (PE) based on template fit w/o NPs
- Perform 2,000 PEs for nominal and $\pm 1\sigma$ -variation
- Results of ensemble tests translated into distr. for hel. fractions
- Take largest difference between mean of nominal and var. as uncertainty
- Add stat. and syst. uncertainty quadratically
- Profile Likelihood Fit:
 - Perform 1,000 PEs and obtain stat.+syst. unc. directly from PE distributions

Comparison between Fitting/Interpolation Methods II

Results:

Method	Hel. Fraction	Mean	Uncertainty	Mean Pull	Pull Sigma
PL linear	F_0	0.701	0.051	0.006 ± 0.025	0.782
	F_L	0.299	0.031	0.008 ± 0.026	0.805
	F_R	0.000	0.025	-0.002 ± 0.023	0.736
PL quad. int.	F_0	0.702	0.051	0.020 ± 0.026	0.803
	F_L	0.299	0.031	-0.009 ± 0.026	0.824
	F_R	-0.001	0.025	-0.032 ± 0.024	0.759
PL quad. fit	F_0	0.701	0.054	0.010 ± 0.025	0.794
	F_L	0.299	0.033	0.003 ± 0.025	0.778
	F _R	-0.000	0.026	0.017 ± 0.025	0.806
Template fit	F ₀	-	0.060	-	-
	F_L	-	0.033	-	-
	F_R	-	0.036	-	-

- Distributions do not reveal any bias (ightarrow Backup: pull distributions)
- Fits with piecewise linear interpolation do not converge
- Given uncertainty with small error: $\lesssim 0.001$

 \Rightarrow Profile likelihood fits lead to smaller uncertainties of the helicity fraction!

Conclusion and Outlook

Conclusion

- Presentation of a PL fit and its features; illustration of setup
- Application: Measurement of the W boson polarisation at ATLAS
- Studies performed with different interp. methods used during the fit
- Quadratic fit describes variations best
- Total unc. on helicity fractions can be reduced by applying PL fits compared to template fit using ensemble tests to estimate syst. unc.

Outlook

- Add more different systematics via nuisance parameters to the PL fit
- Check whether a systematic effect can be profiled:
 - \Rightarrow Solely continuous sources of systematic effect are appropriate (e.g. effects related to detector modelling)
 - \Rightarrow Discrete sources need to be evaluated differently
 - (e.g. MC generator, parton showering)
- In sum: PLFs provide adequate possibility to reduce uncertainties, constitute promising tool for future analyses

Introduction	The ATLAS Experiment	Aspects of PLFs	Results	Conclusion
BACKUP				

Backup Slides: Further Plots and Tables

Fundamentals of the W Polarisation Measurement

Data: collected with ATLAS at $\sqrt{s} = 7$ TeV in 2011 based on $\int \mathcal{L} dt = 4.7$ fb⁻¹

Monte Carlo (MC) samples:

- MC samples (MC11c) used to calculate acceptances and bkg. contributions
- Top reference cross-sections: MSTW 2008 NLO PDF set at $m_t = 172.5 \frac{\text{GeV}}{c^2}$
- $t\bar{t}$ samples for all three signal templates: PROTOS

Definition of physics objects:

- Muons: exploit 3 level trigger, $p_{\rm T}>$ 25 GeV, $|\eta|<$ 2.5, hit and isolation req.
- Jets: use anti- k_t algorithm, $\Delta R = 0.4$,

$$p_{
m T} > 25 \,\, {
m GeV}, \, |\eta_{
m det}| < 2.5, \, |{
m JVF}| > 0.75$$

- $E_{\rm T}^{\rm miss}$: due to ν , energy scale dependent
- *b*-tagging: *MV1* tagger, $\varepsilon_b = 70\%$

Event selection:

Primary vertex

Trigger requirements, $p_T(\mu) > 20 \text{ GeV}$, overlap removal, $p_T(\text{jet}) > 25 \text{ GeV}$, $E_T^{\text{miss}} > 25 \text{ GeV}$, QCD multijet veto $m_T(W) + E_T^{\text{miss}} > 60 \text{ GeV}$, at least 1 *b*-tagged jet, LAr noise bursts

Event Reconstruction: Use kinematic likelihood provided by KLFitter tool

Pull Distributions: Quad. Fit and Quad. Interp.

Compare pull distributions based on quadratic fit (top) and quadratic interp. (bottom)

II. Physikalisches Institut

Pull Distributions: Quad. Fit and Linear Interp.

Compare pull distributions based on quadratic fit (top) and linear interp. (bottom)

II. Physikalisches Institut

Ensemble Tests to Estimate JES Uncertainty on F_0 and N_0

Ensemble Tests to Estimate JES Uncertainty on F_L and N_L

21/22

Ensemble Tests to Estimate JES Uncertainty on F_R and N_R

