

Measurement of the Jet Multiplicity in Top Quark Pair Events in Semi-Leptonic Decay Channel at CMS

6th Annual Workshop of the Helmholtz Alliance Physics at the Terascale

Institut für Experimentelle Kernphysik – Alexis Descroix

Outlook

Introduction

- Jet multiplicity measurement
- Additional parton multiplicity measurement

Results

Introduction

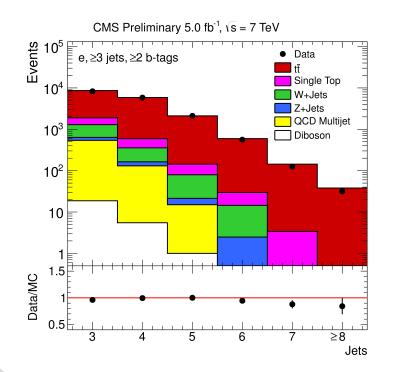
- tt total cross-section well established at LHC
- Differential cross-section measurement possible with 2011 data:
 - Jet multiplicity
 - Parton multiplicity: number of jet not originating from tt decay products
- Measurement important:
 - Constrain QCD scale parameter Q²
 - → large uncertainty in leading order MC (MadGraph + Pythia)
 - tt + (b-)jets is an important background for tt + Higgs, SUSY
- Recent theory calculations for $t\bar{t} + 1/2$ jets exclusive @ NLO
- Powheg will allow tt +1 jet generation @ NLO
- Results and documentation recently public: CMS-PAS-TOP-12-018 http://cdsweb.cern.ch/record/1494576

Jet Multiplicity

Analysis Overview

- Analysis in e + jets and µ + jets channels
- Whole 2011 dataset: 5.0 fb⁻¹
- Selection for lepton + jets events:
 - Exactly 1 isolated lepton (> 30 GeV)
 - Lepton veto (against other type leptons)
 - \geq 3 jets (35 GeV)
 - 2 b-tagged jets (Combined tagger, ~1% mistagging rate)
- Data-driven background estimations:
 - QCD shape from data and normalization from fit to data in sideband
 - W + jets normalization from data (+ heavy flavor correction)
- Bin-by-bin unfolding back to generated jet multiplicity spectrum
- Normalized differential cross-section measurement: "cut & count"
- Combine results from e/µ channels with BLUE combination method

Data-Driven Background Estimation



- The double b-tagging cut strongly reduces background contributions
- Remaining statistics in QCD MC too low \rightarrow extraction from data:
 - QCD shape extracted from data in signal region (≥ 2 b-tagged jets) with an inverted relative isolation cut on lepton
 - Normalization extracted from fit to MET distribution in sideband region: (< 2 b-tagged jets)</p>
 - QCD shape scaled with fit result
- W + jets most important background
 - Heavy flavor fractions corrected according to measurements in other top analyses
 - W + jets shape from MC. Normalization from charge asymmetry:
 - W + jets produces large charge asymmetry
 - Subtracting events (I⁺ I⁻) provides good estimation of W+jets normalization

Jet Multiplicity Distribution in Signal Region

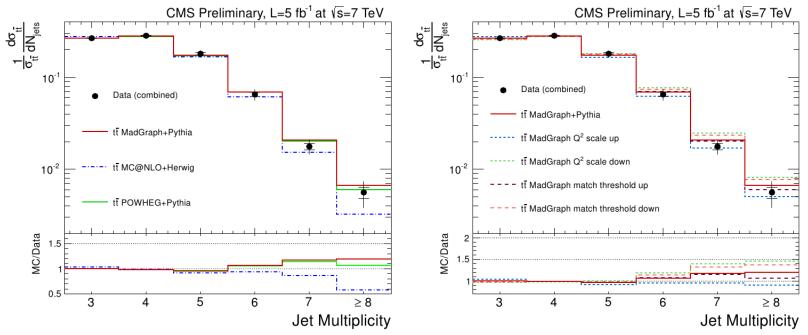
- MC simulated samples are corrected for:
 - Pileup
 - b-tagging scale factor
 - Lepton trigger, reconstruction, and isolation
- Good agreement between data and MC in signal region

Uncertainties

- Total uncertainties are dominated by systematic uncertainties which increase with jet-multiplicity
- Dominant systematic uncertainties:
 - MadGraph generator parameters (2.5% to 35%):
 - Q² scale parameter (renormalization and factorization scale)
 - matrix-element to parton-showering matching threshold parameter
 - Jet energy scale and resolution (1.5% to 14%)
 - Parton distribution functions (2% to 10%)
- Smaller systematic uncertainties: (each of them is below 5%)
 - B-tagging scale factor uncertainty
 - Lepton trigger and selection efficiency
 - Pileup
 - Luminosity

Measurement Method

- Count jets in each event. Number of events with "*i*" jets $\rightarrow N^{i}$ Subtract background from data in each jet-bin: $\frac{d \sigma_{t\bar{t}}^{measured}}{dN_{jets}} = \frac{N_{data}^{i} - N_{bkg}^{i}}{\epsilon^{i} \cdot Lumi} \quad \text{with:} \quad \epsilon^{i} = \frac{N_{rec}^{i}}{N_{gen}^{i}} \quad g^{0} = \frac{N_{ec}^{i}}{\epsilon^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{N_{gen}^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{N_{gen}^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{\epsilon^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{N_{gen}^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{\epsilon^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{\epsilon^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{N_{gen}^{i}} \quad \xi^{i} = \frac{N_{ec}^{i}}{\epsilon^{i}} \quad \xi$
- \bullet ϵ^{i} enables to unfold from reconstructed back to generated jet multiplicity
 - Detector independent
 - Phase space : jet with $p_1 > 35$ GeV and $|\eta| < 2.4$
- Normalize differential cross-section to total measured cross-section
- Combination of e and μ + jets channels with BLUE method
 - Best Linear Unbiased Estimator
 - 0% correlation between lepton systematic uncertainties and statistical unc.
 - 100% correlation between other systematic uncertainties
 - Reduces mainly statistical uncertainties but systematics are dominating


Results

December 3, 2012

Compare predictions from different MC generators:

- MadGraph+Pythia, Powheg+Pythia, and MC@NLO+Herwig
- Compare to predictions from MadGraph with parameter variations:
 - Q2 scale up/down, ME/PS matching threshold up/down

Agreement with MadGraph standard prediction

Slight discrepancies with MC@NLO and MadGraph scale down

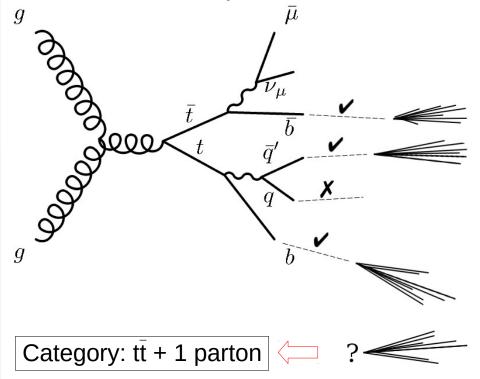
Alexis Descroix - Differential XS in Additional Jets

Additional Parton Multiplicity

Alternative Measurement

- Difference with cut & count measurement:
 - With MC information, remove jets from top decay products from counting
 - \rightarrow More robust way to define additional jets
- Count jets which are incompatible with top decay products
 - \blacksquare ΔR cut between top decay products and generator jets
- Incompatible jets are likely to originate from additional radiated partons

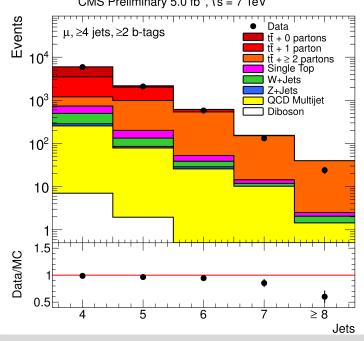
Categorize all events:


- tt + 0 partons
- tt + 1 parton
- tt $+ \ge 2$ partons
- Fit to data of 3 signal templates in χ , goodness of reconstruction

Latest result of ATLAS employing a very similar method (ATLAS-CONF-2012-083)

Event Categorization with MC Information

- Categorize MC signal events depending on the number of jets not matching any top decay product jets:
 - \blacksquare ΔR cut between quarks from top decay and jets at 0.5 for match
 - Generator jets used



- t \bar{t} event in μ + jets decay channel
- Using MC information:
 - One decay product quark does not correspond to any jet
- $\rightarrow\,$ jet probably lost in detector or selection acceptance.
 - One jet does not match any decay product of the top
- → should originate from an additional parton

Analysis Setup

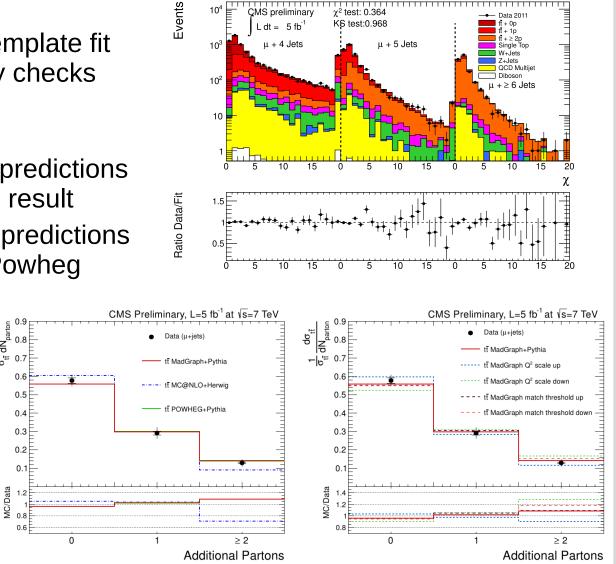
- Very similar configuration as the jet multiplicity analysis:
 - Utilizing same MC samples data-driven background estimation methods
 - Slight change of selection (jet- p_{T} >30 GeV instead of 35 GeV)
 - Same systematic uncertainty sources considered. Pseudo-experiment method employed for calculation
- Jet multiplicity distribution after splitting signal MC in three categories: CMS Preliminary 5.0 fb⁻¹, vs = 7 TeV

Template Fit Setup

~

- Perform a full event reconstruction
- Consider only hypothesis with b-tagged jets assigned to b-quarks
- Calculate goodness of reconstruction χ :

$$\chi = \sqrt{\left(\frac{m_{W^{had}}^{rec} - m_{W^{had}}^{true}}{\sigma_{W^{had}}}\right)^2 + \left(\frac{m_{t^{had}}^{rec} - m_{t^{had}}^{true}}{\sigma_{t^{had}}}\right)^2 + \left(\frac{m_{t^{lep}}^{rec} - m_{t^{lep}}^{true}}{\sigma_{t^{lep}}}\right)^2}{\sigma_{t^{lep}}}$$


- With reconstructed mass of both tops and W boson decaying in quarks
- True masses and mass uncertainties taken from MC
- Distribution of χ gets split in three jet bins in addition $(\mu + 4, 5, \ge 6 \text{ jets})$
- \mathbf{z} enables to distinguish between events with or without additional partons
 - Example in μ + 4 jets bin:
 - No additional partons \rightarrow all jets match top decay products \rightarrow low χ
 - Additional partons \rightarrow some jets from top decay products lost \rightarrow high χ

Results

December 3, 2012

- Maximum likelihood template fit performs well (linearity checks performed)
- Apply fit result on MC predictions and normalize for final result
- Good agreement with predictions from MadGraph and Powheg
- Small discrepancies with MC@NLO and MadGraph scale down also observed with this measurement

Conclusion

- Two alternative methods measuring the normalized differential crosssection of tt events in additional jet multiplicity bins.
- Different measurement methods with similar result interpretations:
 - Good agreement between measurement and MadGraph and Powheg MC predictions
 - Slight discrepancies with MC@NLO and MadGraph scale down variation
 - Measurement uncertainties dominated by systematics