

Status and plans of the m_π working group

http://tautauag.phy.tu-dresden.de 6th Annual Workshop of the Helmholtz Alliance, Hamburg, 4.12.2012 <u>Kathrin Kormoll</u>

Helmholtz Alliance

Task of the $m_{_{T\!T}}$ group

- Funded by the Helmholtz Alliance since April 2008
- Aims
 - Development and verification of algorithms related to ττ final states (mass definitions and shape extraction from data)
 - Several production channels: Z, h/H/A in VBF and b-quark assoc.
 - All final states: lep-lep, lep-had, had-had
 - Development and verification of methods of background extraction from data (sidebands, OS/SS, cut inversion)
- Exchange ideas and concepts between ATLAS, CMS and Theory
 - Focus on discussions, not on latest results to be published

Task of the m_{π} group

- Active members
 - ATLAS: Bonn, Dresden, Freiburg, Göttingen, München
 - CMS: DESY, Karlsruhe
- Conveners
 - From April 2008 up to September 2012:
 - Michael Kobel (ATLAS, TU Dresden)
 - Günther Quast (CMS, KIT Karlsruhe)
 - From October 2012:
 - Jürgen Kroseberg (ATLAS, Bonn)
 - Alexei Raspereza (CMS, DESY)

Meetings

- So far nine 2-day workshops (twice a year)
 - Typically 15-20 participants
- Short intermediate meetings at annual Helmholtz Alliance workshops

Recent Progress

- Main Focus on comparison of methods for ττ mass reconstruction
 - Review from theory side
 - Performance of different mass reconstructions in Monte Carlo simulation and with data
 - New tool for multivariate mass reconstruction
- Embedding techniques
 - Trigger studies and update
 - Absolute normalization and comparison between Particle-Level and Hit-Level
- Analysis methods and background extraction
 - Focus on Higgs searches at ATLAS and CMS

- Invited theory talk by Teng Jian Khoo (Cambridge University)
 - From decay 12 constraints on 16 parameters.
 - For each hadronic decay, 1 constraint added.
 - 2-4 free parameters from neutrino momenta.
- Overview on reconstruction methods
 - Kinematic constraints
 - Collinear approximation
 - Statistical methods
 - MMC, CMS likelihood Moves emphasis from reconstruction to modelling, can be computationally intensive, but powerful

H

- Mass bound methods
 - Many variables, all connected through transv. Projection T, summation $\boldsymbol{\Sigma}$ and minimisation principles because of unknowns

- Big emphasis on comparison of mass reconstruction methods in fully leptonic and semi-leptonic final state
- Visible mass _n

$$m_{\tau\tau}^{vis} = \sqrt{p^{\mu}(vis1)p_{\mu}(vis2)}, \mu = 0, 1, 2, 3$$

• Effective mass

 $m_{\tau\tau}^{eff} = \sqrt{(p^{vis1} + p^{vis2} + p^{miss})^2}$, where $p^{miss} = (E_T^{miss}, E_x^{miss}, E_y^{miss}, 0)$

- Collinear approximation
 - assumption 1: H/Z boosted $\Rightarrow \tau$ decay products produced collinearly to taus \Rightarrow no back-to-back decays are allowed ($|\cos(\delta\phi)| < 0.95$)
 - assumption 2: MET is only coming from ν_{τ}

$$x_{i} = \frac{p_{T}^{i}}{p_{T}^{i} + p_{T}^{mis}}, \text{i=visible products}$$
$$m_{\tau\tau} = \frac{m_{vis1vis2}}{\sqrt{x_{vis1} * x_{vis2}}}$$

- Mass bounds ArXiv:1105.2977
 - Early projected transverse mass ($T \rightarrow \Sigma$ (4vectors from visible decay products and E_{miss}))
 - Late projected transverse mass ($\Sigma \rightarrow T$)
 - Transverse true mass (transverse mass of visible+invisible decay products, for massless inv. Particles = late proj.tr. mass)
 - Bound mass (summation of 4vectors from vis. decay products and E_{miss}) $m_{\tau\tau}^{\text{bound}} = \min_{\vec{q}_{\tau}^{\tau_1} + \vec{q}_{\tau}^{\tau_2} = \vec{p}_{\tau}^{\text{miss}}} \left| (p_{\tau_1}^{\mu} + p_{\tau_2}^{\mu} + q_{\tau_1}^{\mu} + q_{\tau_2}^{\mu}) \right|$

- Missing Mass Calculator (ATLAS) Arxiv:1012.4686
 - Scan of the phase space of the free parameters
 - Get a PDF for each point on the grid (from matrix element)
 - m_T reconstructed is weighted by result from PDF
 - Take most probable $m_{_{\rm T}}$ solution as final estimator
- Secondary Vertex Fit (SVFit, CMS) Arxiv:1202.4083
 - Maximizes likelihood with respect to τ kinematics and MET
- Neural Network (CMS)
 - Direct mass reconstruction
 - Training and testing on Z sample
 - Choose NeuroBayes as neural network
 - 9 input variables (Kinematic variables, Angular variables, Track variables, τ-jet variables)

 \rightarrow Which mass reconstruction yields best performance for specific channel?

- Studies in $Z \rightarrow \tau \tau \rightarrow e/\mu$ +had+2 υ channel by Despoina Evangelakou (Göttingen)
 - Combination of bound and transv. true mass
 (utilisation of transv. true mass if bound mass fails)¹⁰⁰₈₀
 - Best performance
 - 100% acceptance, fast, mass peak narrow and close to real Z mass, but tails to higher masses

Studies in $H \rightarrow \tau \tau \rightarrow e/\mu + had + 2\nu$ channel by Birgit Stapf (Bonn)

- Separation in VBF category, 1-jets, 2-jets
- MMC yields best results
- similar performances
- Higgs-bound mass: sensitive to resolution of E^T_{miss}

4.12.2012

- Studies in $H \rightarrow \tau \tau \rightarrow e/\mu$ +had+2 ν by Felix Friedrich (TU Dresden)
 - MC study for b-quark assoc. Higgs production
 - Mass mean is dependent in kinematic quant. (higgs-pt, τ-pt, jet-pt)
 - Elimination of dependency
 - Elimination does not improve separation w.r.t. $Z \rightarrow \tau \tau$, ttbar bkg., but leads to better resolution

• Studies in $H \to \tau \tau \to e \mu + 4 \upsilon$ VBF channel by Julian Maluck

(Freiburg)

- collinear approximation and MMC reach higher significances than invariant mass and effective mass
 mean
- Mass algorithms sensitive to E_{miss}^{T} input collinear approximation
 - Investigation of coll. Mass with \vec{E}_{miss}^{T} input MMC Peak from MMC scan
 - MMC not significantly better than collinear approximation with E^t_{miss} correction for VBF

• Studies in $H \rightarrow \tau \tau \rightarrow e\mu + 4\nu$ channel by David Kirchmeier (TU Dresden)

- MMC performance is not convincing in comparison to other reconstructions
- early projected mass well suited
- high bias, but can be calibrated
- acceptable dependencies on event variables
- good performance in tt separation

 σ

19,5 GeV

17,8 GeV

17,7 GeV

125,5 GeV

130,0 GeV

129,8 GeV

• Studies in $H \rightarrow \tau \tau \rightarrow \mu$ +had+ 2 υ channel by Thomas Müller (KIT Karlsruhe)

- Presentation of Neural Network results for mass reconstruction
- Precision as good as best current method (Svfit) in the entire mass range
- Resolution up to 5% better for 100-150 GeV true mass
- Very fast calculation with trained network

2) Embedding Techniques

- Was established within the m_{π} working group and became standard tool in both ATLAS and CMS.
- Employed successfully for the Higgs boson searches.
 Procedure ("embedding technique")
 - take a real $\gamma^*/Z \rightarrow \mu \mu$ event and remove the muons from event
 - simulate two taus with the kinematics of the muons
 - overlay the result of the tau reco with the residual $Z{\rightarrow}\;\mu\;\mu$ event
 - re-reconstruct to get an artificial $\gamma^*/\mathsf{Z} \to \tau_{_{\rm U}} \, \tau_{_{\rm U}}$

Overlay

- a) replace all hits in the tracker and in the calorimeter associated to the muons and the tau decay products
- b) replace only the deposited energy in the calorimeter cells in a cone around the muon direction

taken from: Manuel Zeise (CMS)

energy deposit in

calorimeter cells

2) Embedding Techniques pfElectronEfficiency_PU30

2) Embedding Techniques

Thomas Schwindt, Jessica Liebal (Bonn) 90 80

- Kinematic studies on embedded τ -decays
- Filter on generator niveau to adress kinematic cuts in studies on embedded samples
- Gain in statistics of order \sim 3, depending on decay channel

Holger von Radziewski, Michel Janus (Freiburg)

- Trigger-parametrisation from data
- To modell trigger bias on p_{τ} shape

for combination of several triggers:

- Reweight embedding with trigger efficiency from data
- Emulate trigger decisions using random numbers and efficiency from data

200

1000

1800⁻

1600

1400

1200

1000E

800

600

400

200

3) Analysis methods and background extraction

- Analysis of $H \rightarrow \tau \tau \rightarrow \mu \mu + 4 \upsilon$ by Agni Bethani (DESY/ KIT)
 - 5 Event categories:
 - SM (VBF, boosted Higgs, gluon fusion), MSSM (b-tag, no b-tag)
 - Building likelihood method with 3 event classes (j)

•
$$Prob(j) = \prod_{i=1}^{m} f(j, x_i)$$

•
$$L(j) = \frac{Prob(j)}{\sum_{k=1}^{3} Prob(k)}$$

Z/γ^{*}→μμ

 $\Phi \rightarrow \tau \tau \rightarrow \mu \mu$ signal

Φ→ττ(200) tanβ=20

800

m_r [GeV/c²]

1000

Observed

 $Z/\gamma^* \rightarrow \mu\mu$

QCD multijet

Di-Bosons

Z->TT

tī

600

400

3) Background extraction: $Z/\gamma^* \rightarrow \mu\mu$

- By exploiting the difference in the shapes of the intermuon DCA significance between:
 - $Z/\gamma^* \rightarrow \mu\mu$
 - $Z \rightarrow \tau \tau$ and $\Phi \rightarrow \tau \tau \rightarrow \mu \mu$ signal
- The DY background is estimated in 5 dimuon mass regions The method:

DCA – distance of closest approach of both muon tracks

- New "reduced" likelihood (L_{red}) from same variables except the DCA significance
- DCA significance distributions are fitted in bins of L_{red} for every dimuon mass region.
 - templates for $Z/\gamma^* \rightarrow \mu\mu$ and $Z/\Phi \rightarrow \tau\tau \rightarrow \mu\mu$
- Then the data are fitted as a superposition of the 2 templates

3) Background extraction

- Top quark pair normalisation by Holger von Radziewski (Freiburg)
 - Ratio K = SR/CR and shapes of distributions from simulated events $H_T = \sum p_T$ (jets)

Shape of MC prediction describes data in control region.

4.12.2012 Normalization adjusted by 13%.

Shape of reconstructed mass agrees between CR and SR within statistical uncertainty. Use shape from MC in SR.

19

Issues and plans

- Continue with new conveners J
 ürgen Kroseberg (ATLAS, Bonn) and Alexei Raspereza (CMS, DESY) after 2012
- Keep focus on experimental methods
- Widen the scope to X(126 GeV) property analyses (spin, angular distributions), MSSM/ high-mass searches.
- In that aspect involve input from theorists.
- Identify topics where CMS and ATLAS (so far) took somewhat different/complementary experimental approaches
- adjust format when useful for work within updated scope
- try to remain complementary and get connected to other existing LHC groups

Issues and plans

- New members are welcome to join!
- Information can be found here:
 - Homepage http://tautauag.phy.tu-dresden.de
 - Wiki https://wiki-mtautau.terascale.de/index.php
 - Meeting dates and agendas

http://www.terascale.de/calendar/ → Alliance Indico → Research Topics → Physics Analysis → Working Groups

- Subscription to mailing list

https://lists.desy.de/sympa/subscribe/hgfa-mtautauag

has to be done actively by each member.

THANK YOU!