

Search for $H \rightarrow \mu \mu$ in SM and MSSM with CMS

Hendrik Weber A. Perieanu, S. Schael, (RWTH Aachen)

> I. Physikalisches Institut B RWTH Aachen

Physics at the Terascale 6th Annual Workshop Hamburg 2012

- after discovery of Higgs-like boson, confirmation in as many channels as possible is necessary
- $\bullet\,$ branching ratio into muons is only an order of magnitude lower as $H\to\gamma\gamma$
- exploiting the VBF topology separation from dominant backgrounds possible
- smooth background and simple signal shape make background estimation from data easy

The Higgs in the MSSM

- $\varphi \to b\bar{b} \approx$ 90% dominant for small m_A but hard to reconstruct due to the 4 *b*-jets in the final state
- $\varphi \rightarrow \tau^+ \tau \approx$ 9% but the recontruction of m_A and Γ_A is very difficult
- $\varphi \rightarrow \mu^+ \mu^- \approx 0.03\%$ is small, but it gives a clean signature in the detector and gives the opportunity to reconstruct m_A and Γ_A and through that $\tan \beta$

- the masses of two neutral Higgs bosons are always degenerated
- Higgs sector completely defined by m_A and $\tan\beta$

Compact Muon Solenoid

MSSM analysis as published in CMS PAS HIG-12-011

pre-selection:

- basic muon selection
 - $p_{T\mu 1} > 30 \ GeV \&$ $p_{T\mu 2}$ > 20 GeV (asymmetric due to trigger thresholds) • $|\eta_{\mu}| < 2.1$ isolation
- $\not\!\!E_T < 30 \ GeV$ event categories:
 - 1 tagged b-jet
 - $p_T^{Jet} > 20 \ GeV$ • $|\eta_{Jet}| < 2.4$ loose b-tag ID
 - 1 additional muon
 - $p_{\tau}^{\mu} > 3 \; GeV$
 - $|\eta_{\mu}| < 2.4$
 - separation to other muons
 - everything else

[GeV/c²] ₀10 Run2011 L= 4.96fb⁻¹ A°/H°/h°: u⁺u $m_s = 150 \text{GeV/c}^2 \tan\beta = 30$ γ^{*}/Z⁰→1⁺1[−] (e, μ, τ) Candidates/2 :Ŧ ŧ₩ light scalar h t: t-channel s-channel OCD $W^{\pm} \rightarrow 1^{\pm} v$ WW WΖ 7.7 overlapping H and A 10-11 $M_{\mu^{+}\mu^{-}}$ [GeV/c²] 2×10² 10² 70

invariant di-muon mass after pre-selection

RNNTHAACHEN

CMS Preliminary 2011

Vs=7TeV

- category 1 has best signal to background ratio
- category 3 has highest statistics
- category 1 and 3 have highest sensitivity
- category 2 has low sensitivity, but serves as verification if a signal appears in category 1 or 3

🞇 background estimation from data

• background model: linear combination of

- Breit-Wigner at the Z peak
- photon propagator contribution
- both multiplied with a falling exponential for the pdf contribution
- Z parameters fixed from fit to data with crystal ball (outside of signal region)

• signal model:

- linear combination of three Breit-Wigner peaks, convoluted with a common detector resolution
- signal parameters fixed by a fit to simulation

background estimation from data

- signal strength as free parameter
- signal and background shapes used in limit calculation:
 - signal shape from fit to simulation
 - background shape from fit to data
- confidence level scanned in $m_A \tan \beta$ plane
- limits calculated with signal samples closest to 95% C.L. in the scan
- shape uncertainties considered as systematic uncertainty
- more details can be found in CMS PAS HIG-12-011

Hendrik Weber

limit calculation (2011)

Combination

biggest contribution to the combination from categories 1 & 3 updated analysis with 2012 dataset in preparation

RVVIT**: AACHE**N

SM Higgs analysis

Hendrik Weber

basic muon selection

- single muon trigger $(p_{T\mu} > 24 \text{ GeV})$
- two well reconstructed muons with:
- $p_{T\mu}$ > 25 GeV
- $|\eta_{\mu}|$ < 2.1
- isolation

event categorization

VBF categories

- two jets with
- p_T^{jet} > 30 GeV
- $|\eta_{jet}|~<~5$
- no additional jets in the rapidity gap
- VBF Tight
 - $|\Delta\eta_{j,j}| > 5$
 - $m_{j,j}$ > 400 GeV

• VBF Medium

- not in VBF Tight
- $|\Delta\eta_{j,j}|$ > 4
- $m_{j,j}$ > 400 GeV

• VBF Loose

• not in VBF Tight or Medium

•
$$|\Delta\eta_{j,j}|$$
 > 3

•
$$m_{j,j}$$
 > 300 GeV

Non-VBF categories

- events which fail the VBF Preselection are split up further:
- DiMuonPt Very Low
 - $p_T^{\mu\mu}$ < 30 GeV
- DiMuonPt Low

• 30 Gev $p_T^{\mu\mu}~<$ 50 GeV

• DiMuonPt Medium

• 50 Gev $p_T^{\mu\mu}~<~75$ GeV

DiMuonPt High

• 75 Gev $p_T^{\mu\mu}~<~125~{
m GeV}$

DiMuonPt Very High

• $p_T^{\mu\mu}$ > 125 GeV

VBF Medium

- contributions by gluon fusion and VBF production
- good signal to background ratio in all three categories
- low statistics

Pt Medium

- main contribution by gluon fusion
- signal to background ratio not as good as in VBF
- high statistics
- smooth background in sideband
- additional MVA's intended on all SM categories

first limit predictions from MC

Considering further improvement in pile-up veto and higher cross sections for 13 (14) TeV the sensitivity of this channel should be sufficient to see a SM Higgs before LS2.

conclusions

- MSSM analysis already published with 2011 data
- updated prospects for 8 TeV already done this summer
- SM analysis gains momentum
- selection and event categories established
- $\bullet\,$ first estimations for sensitivity suggest \approx 4x SM cross section

outlook

- detailed update of MSSM analysis with full 2012 dataset
- proper SM Higgs limit estimation including
 - background estimation (similar to MSSM analysis)
 - signal modelling
 - category optimization
 - study of systematic uncertainties

BACK UP

Hendrik Weber

limit calculation (2012) first prospects

biggest contribution to the combination from categories 1 & 3

💖 signal injection study

signal injection

