Multi-Jet cross section at NLO accuracy in QCD with NJet

Benedikt Biedermann Humboldt-Universität zu Berlin

In collaboration with Simon Badger, Peter Uwer, Valery Yundin

6th Annual Helmholtz Alliance Workshop on "Physics at the Terascale" 3. – 5. December 2012

Multi-Jet Production

Signal Process:

- Test of QCD
- Constrain coupling α_s and PDFs

Background Process:

 crucial for physics search beyond the standard model

Multi-jet production at leading order (LO):

- well automated tools like Alpgen, Madgraph, Sherpa+Comix
- multiplicities up to 12 jets possible
- rough estimate, though residual dependence on renormalisation scale

For precision jet physcis, next-to-leading order (NLO) accuracy required

Multi-Jet Production @ NLO

2-jet production:	[Ellis, Kunszt, Soper 1992] [Giele, Glover, Kosower 1993]					
3-jet production:	[Nagy 2002, 2003] (all channels) [Trocsanyi 1996] (gluon channe [Kilgore, Giele 1997] (gluon channe	el) el)				
4-jet production:	[Bern et al. 2012] (7 Tev [Badger, BB, Uwer, Yundin 2013] (8 Tev					
toll	arXiv:1209.0098, accepted for Publication PLB					

In this talk:

3-jet and 4-jet production at the LHC for 8 TeV at NLO

 massless QCD (massless b-quark in the initial state, top quark integrated out)

$$pp \rightarrow n \text{ jets} \qquad (a) \text{ NLO}$$

$$d\sigma_n = d\sigma_n^{\text{LO}} + \delta d\sigma_n^{\text{NLO}} + O(\alpha_s^{n+2})$$

$$\int_{\sim \alpha_s^n} \int_{\sim \alpha_s^{n+1}} \int_{\sim \alpha_s^$$

NLO contribution with dipole subtraction: [Catani, Seymour 1996]

$$\delta \sigma^{\text{NLO}} = \int_{n} \left(d\sigma_{n}^{\text{V}} + \int_{1} d\sigma_{n+1}^{\text{S}} \right) + \int_{n} d\sigma_{n}^{\text{Fac.}} + \int_{n+1} \left(d\sigma_{n+1}^{\text{R}} - d\sigma_{n+1}^{\text{S}} \right)$$

Virtual Corrections

Rapid grow in complexity with increasing number of external legs e.g. 6-gluon one-loop amplitude around 15000 diagrams → use method of generalised unitarity

Ansätze for automation of virtual corrections:

NJet [Badger, BB, Uwer, Yundin 2012]

GoSam, Golem95, Samurai, FeynArts, Helac-1loop, Cuttools

Blackhat, MadLoop, Rocket, OpenLoops "numerical loop integration" [Becker et al.]

public code

public codes public codes

private codes private codes

NJet – what you get

provides full colour summed 1-loop amplitudes for all channels of 2-jet, 3-jet, 4-jet and 5-jet production in massless QCD

Based on NGluon [Badger, BB, Uwer 2011] generalised Unitarity with tree-level amplitudes as input to compute ordered 1-loop amplitudes with arbitrarily many legs

Equipped with Binoth Les Houche accord interface [Binoth et al. 2009] to be linked trivially with standard Monte Carlo Programs

Download at: www.bitbucket.org/njet/njet/downloads www.physik.hu-berlin.de/pep/tools arXiv:1209.0100

• detailed analytical checks (IR-, UV-poles, [Nagy,Bern, Dixon, Kosower,Forde...]

• checks against individual phase space points from existing codes (Helac, Gosam, BlackHat)

Colour, loop, primitives & co

NJet – how it works

 Primitive amplitudes computed with generalised unitarity / [Ossola, Papadopoulos, Pittau] integrand reduction techniques

[Ellis, Giele, Kunszt] [Britto, Cachazo, Feng, Mastrolia]

- Berends-Giele recursion for the tree amplitudes [Berends, Giele 1986]
- Construction of the amplitudes in terms of primitives along the lines of [Ellis, Giele, Kunszt, Melnikov, Zanderighi]
- Sophisticated cache system to reuse tree-amplitudes when doing the permutation and helicity sums
- Dynamical switch on the fly between double and quadruple precision

[Hida,Li,Bailey]

- QCDLoop and FF for scalar integrals [van Oldenborgh 1990; Ellis, Zanderighi 2008]
- Written in C++ and in Python

Timings for the Virtuals

2-jet	$T_{sd}[s]$	3-jet	$T_{sd}[\mathbf{s}]$	4-jet	$T_{sd}[\mathbf{s}]$	5-jet	T_{sd}	$[\mathbf{s}]$
4g	0.030	$5\mathrm{g}$	0.22	6g	6.19	7g	171	3
2u2g	0.032	$2\mathrm{u}3\mathrm{g}$	0.34	2u4g	7.19	2u5g	195	.1
2u2d	0.011	2u2d1g	0.11	2u2d2g	2.05	2u2d	3g $45.$.7
4u	0.022	2u2d1g	0.11	4u2g	4.08	4u3g	92.	.5
overything in			2u2d2s	0.38	2u2d	2s1g 7.9	9	
ever	yunng			2u4d	0.74	2u4d	1g 15.	.8
full c	olour	+ full h	elicity	6u	2.16	6u1g	47.	.1
+ scaling test								7
.		$gg \rightarrow 2g$	$g gg \rightarrow$	58 88	$\rightarrow 4g$	$gg \rightarrow 3g$	_	
	standard sum		0.03	0.22	2 6	.19	171.31	
	de-symmetrized		0.03	0.03 0.07		.57	3.07	

Basic channels for 4-jet production:

$$0 \to ggggggg \qquad 0 \to q\overline{q}q'\overline{q}'gg$$
$$0 \to q\overline{q}ggggg \qquad 0 \to q\overline{q}q'\overline{q}'q''\overline{q}''$$

Benedikt Biedermann

Numerical set up

- MSTW2008 PDF set
- anti-kt jet algorithm as implemented in FastJet with jet radius R=0.4
- Massless QCD, 5-flavour scheme
- set $\mu_f = \mu_r \equiv \mu$ and use dynamical scale base on sum of the transverse momentum of the final state partons

$$\hat{H}_T = \sum_{i=1}^{N_{\text{parton}}} p_{T,i}^{\text{parton}} \qquad \exists \mu = \hat{H}_T/2$$

- Scale variation: $\hat{H}_T/4 \leq \mu \leq \hat{H}_T$
- Kinematical cuts: Transverse momentum of the first jet pt > 80 GeV, subsequent jets at least pt > 60 GeV, Rapidity: eta < 2.8

[ATLAS 2011, BlackHat 2011]

[Cacciari, Salam, Soyez 2012]

$$\sigma_n^{\rm NLO} = \sigma_n^{\rm LO} + \delta\sigma_n^{\rm NLO}$$

Confirmed results at 7 TeV:

$$\sigma_{3}^{7\text{TeV-LO}} = 93.40(0.03)^{+50.37}_{-30.34} \text{ nb} \qquad \sigma_{4}^{7\text{TeV-LO}} = 9.97(0.02) \text{ nb}$$

$$\sigma_{3}^{7\text{TeV-NLO}} = 53.74(0.16)^{+2.06}_{-20.72} \text{ nb} \qquad \sigma_{4}^{7\text{TeV-NLO}} = 5.56(0.17) \text{ nb}$$

$$\longrightarrow \text{ Excellent agreement with [Bern et. al. 2011]}$$

New results at 8 TeV:

$$\begin{split} \sigma_3^{8\text{TeV-LO}} &= 126.65(0.05)^{+66.56}_{-40.40}\,\text{nb}, \quad \sigma_4^{8\text{TeV-LO}} = 14.36(0.01)^{+10.38}_{-5.6}\,\text{nb}, \\ \sigma_3^{8\text{TeV-NLO}} &= 72.57(0.16)^{+2.71}_{-28.08}\,\text{nb}, \quad \sigma_4^{8\text{TeV-NLO}} = 8.15(0.09)^{+0.0}_{-3.24}\,\text{nb}. \end{split}$$

Distributions for 3-jets

Benedikt Biedermann

Distributions for 4-jets

The total jet cross section

In addition to the 3-jet and 4-jet cross section, we evaluated also the 2-jet cross section:

 $\sigma_2^{\text{8TeV-LO}} = 1234.9(1.2) \text{ nb}$ $\sigma_2^{\text{8TeV-NLO}} = 1524.9(2.8) \text{ nb}$

Estimate of the total jet cross section: appr. 1600 nb

Ratio between 2-jet, 3-jet and 4-jet cross section: 1 : 0.05 : 0.005

Is the four jet rate relevant?

Answer: YES!!! At the level of differential distributions the ratios become less extreme.

Ratio between 3 and 4 jets

Small ratio of total four jet and three jet cross section mainly due to low pt region. At high pt the ratio increases up to 0.5 (at NLO)

Conclusion

- 3-jet and 4-jet production at 8 TeV for the LHC with NJet and Sherpa have been presented
- NLO cross sections reduce LO result by around 45%
- Results at 8 TeV increased around 35 % 50 % with respect to 7 TeV due to larger parton flux at higher energies
- Dynamical scale setting gives almost constant K-factor for differential distributions
- Large corrections at low pt may require beyond fixed order calculation All ingredients for matching NLO to a parton shower are publicly available
- Agreement of individual phase space points of NJet with other existing codes and perfect agreement of full cross sections with results from BlackHat
- NJet is publicly available, includes 2-jet, 3-jet, 4-jet and 5-jet production

Extra slides

Benedikt Biedermann

Caching full tree amplitudes

Necessary conditions: 1. Loop Momentum must agree

- 2. External and loop flavours must agree
- 3. External helicities must agree

Benedikt Biedermann

Scalar Integral Basis

Decomposition of an arbitrary one-loop amplitude: [Passarino, Veltman1979]

$$D_i = (p_i + l)^2 - m_i^2$$

determination of integral coefficients

No tadpoles in massless theories

Integrand Properties

Focus on the **integrand** $\mathcal{F}_n(l)$ of the amplitudes

$$\mathcal{A}_{n}^{\text{loop}} = \int d^{4}l \,\mathcal{F}_{n}(l) + \mathcal{A}_{n}^{\text{rat}} \qquad \begin{bmatrix} \text{Ossola,Papadopoulos,Pittau} \\ \text{[Ellis, Giele, Kunszt]} \\ \text{[Britto, Cachazo, Feng, Mastrolia]} \end{bmatrix}$$
$$\mathcal{F}_{n}(l) = \sum_{\{ijkl\}} \frac{\overline{d}_{ijkl}(l)}{D_{i}D_{j}D_{k}D_{l}} + \sum_{\{ijk\}} \frac{\overline{c}_{ijk}(l)}{D_{i}D_{j}D_{k}} + \sum_{\{ij\}} \frac{\overline{b}_{ij}(l)}{D_{i}D_{j}}$$

Numerators: loop-momentum independent part + spurious terms

Spurious terms: loop-momentum tensors which vanish after integration

Loop-momentum independent part is the desired integral coefficient

Box Example

Integrand $\mathcal{F}_n(l)$:

$$\mathcal{F}_n(l) = \sum_{\{ijkl\}} \frac{\overline{d}_{ijkl}(l)}{D_i D_j D_k D_l} + \sum_{\{ijk\}} \frac{\overline{c}_{ijk}(l)}{D_i D_j D_k} + \sum_{\{ij\}} \frac{\overline{b}_{ij}(l)}{D_i D_j}$$

Tensor structure of a general box part $\overline{d}(l)$ well known:

$$\overline{d}(l) = d_0 + \tilde{d}(l) = d_0 + d_1 \varepsilon_{\mu\nu\rho\sigma} p_1^{\mu} p_2^{\nu} p_3^{\rho} l^{\sigma} \int d^4 l \frac{d_0 + \tilde{d}(l)}{D_i D_j D_k D_l} = d_0 \int d^4 l \frac{1}{D_i D_j D_k D_l} = d_0 \mathcal{I}^{(4)}$$

Compute $\overline{d}(l)$ for two different l \rightarrow system of equations \rightarrow determine d_0 How do we get $\overline{d}(l)$?

Partial fractioning the integrand

Integral coefficient:

$$\longrightarrow d_0 = \frac{1}{2} \left(\overline{d}_{ijkl}(\boldsymbol{l_c^+}) + \overline{d}_{ijkl}(\boldsymbol{l_c^-}) \right)$$

Rational Part

1. Absorb epsilon dependence in effective (complex) mass: [Bern, Dixon, Dunbar, Kosower 1997]

$$l_{[4-2\varepsilon]} = l_{[4]} + l_{[-2\varepsilon]} \qquad [Bern, Dixon, Durbar, Kosower 198]$$

$$l_{[4-2\varepsilon]}^2 = l_{[4]}^2 - l_{[-2\varepsilon]}^2 \stackrel{!}{=} 0 \qquad \longrightarrow \qquad l_{[-2\varepsilon]}^2 = -\mu^2$$

Integrand for the rational part is a polynomial in μ^2 .

2. Expand integral basis in higher integer dimension and take $\epsilon \to 0$ limit

$$\mathcal{A}_{n}^{rat} = -\frac{1}{6} \sum_{i,j,k,l} C_{4;i|j|k|l}^{[4]} - \frac{1}{2} \sum_{i,j,k} C_{3;i|j|k}^{[2]} - \sum_{i,j} \frac{s_{i,j-1}}{6} C_{2;i|j}^{[2]}$$

"constant" integral

Integral coefficient

[Giele, Kunszt, Melnikov 2008] [Badger 2009]

- Additional hidden pentagon contributions
- Use SUSY relations to interpret "rational gluons" as scalar contributions
- Use the same four dimensional techniques