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QCD @ LHC: DIFFICULTY OF NEW PHYSICS

• The goal for the LHC is to discover new physics beyond the SM (also via precision tests of the SM)  

• Every analysis depends on understanding jets (both perturbative and non-pert.)  

LHC as a QCD machine

Exclusive n-jet final states
• Many analyses rely on dividing the event sample into 
jet multiplicity bins and perform (or optimize) analysis 
bin by bin.

Analysis type Excl. jet bin

Higgs WW* 0,1 jet

Higgs WBF 2 jet

Di-boson 0,1 jet

Top mass 4 jet

New physics 4,8,12? jet

• There may be many other uses for dividing analyses according to jet bins, but 
predictions of exclusive jet rates for both signal and background (usually harder) are in 
some cases already the dominant uncertainty.

Theoretical challenge
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Exclusive jet rates via jet scaling 
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RATIOS OF EXCLUSIVE JET RATES

• Our idea: use knowledge of lower multiplicity jet rates (as control region).

• But, we need a well defined prescription for extrapolation.

Reasons for studying ratio instead of rate

• Experimentally and theoretically systematic tend to cancel.

• Visually easier to identify physics

key point: the counting of jets       is throughout 
this talk the number of jet in addition to the 

core-process (radiated jets)

Although NLO calculations contain one additional power of enhanced logarithms, this

might not be su�cient for high jet multiplicities. At NNLO, although there has been an

enormous amount of recent development [26], the number of fully di↵erential calculations

is limited, and an automated implementation is not foreseeable in the near future.

On the other hand, we know that jet radiation is enhanced by traceable logarithms.

This makes improved predictions for QCD observables based on resummation possible.

The general strategy is to redefine the perturbative series from powers of ↵s to including

the relevant logarithms; the simplified structure of these enhanced terms then allows for

a resummation to all orders. Once the resummed form is known we can match onto a

fixed order calculation and avoid double-counting. For Sudakov-type logarithms a general

method for this type of resummation is available [27], and for particular event shape ob-

servables an automated approach exists [28]. In LHC analyses, the resummation of finite

logarithms in the presence of a jet-veto scale is of interest [17, 29].

A numerical approach to resummation is provided by parton-shower simulations [30].

It is automated in the multi-purpose Monte Carlo generators Pythia [31], Herwig [32] and

Sherpa [33] to leading order in the strong coupling combined with the resummation of lead-

ing collinear logarithms (LO/LL). This method di↵ers from the previous approaches in that

the full spectrum of final state partons or hadrons is produced explicitly. While the parton

shower is well defined for relatively small transverse momenta of the jets it is not applicable

for hard jet radiation. However, this limitation is overcome by the CKKW [11], MLM [12],

and CKKW-L [34] jet-merging algorithms, that incorporate the tree-level matrix-element

corrections for the first few hardest emissions [30, 35].

A complementary strategy is provided by the MC@NLO [36] and POWHEG [37] ap-

proaches, that realize the matching of NLO calculations with parton showers. While these

methods guarantee NLO/LL accuracy only the first/hardest shower emission gets corrected

by the real-emission matrix element. Higher jet multiplicities are described in the parton-

shower approximation only. First attempts to combine the NLO/LL approaches with the

tree-level merging ansatz have been reported recently [38]. An unprecedented level of so-

phistication for predicting multi-jet final states is achieved by the promotion of merging

algorithms to next-to-leading order accuracy [39].

Even though we can nowadays simulate multi-jet events, a detailed understanding of

inclusive or exclusive n

jets

distributions at the LHC is still missing. Its universal features

have been studied since 1985 [7]. Scaling patterns can be conveniently displayed in the

ratio of successive exclusive jet cross-sections

R

(n+1)/n =
�n+1

�n
=

Pn+1

Pn
with Pn =

�n

�

tot

. (1.1)

We define the jet multiplicity n as the number of jets in addition to the hard process,

e.g. �
1

for pure QCD di-jets is experimentally a 3-jet final state. Jets which are part of the

hard process are not included in the scaling analysis because they do not arise from single

QCD emissions.
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The emergence of scaling in QCD jets

Jet ratios as a handle on scaling and multi-jet rates

�
n

is the exclusive n jet cross section (in addition to core process jets)

R
n+1/n ⌘ �

n+1

�
n

Why are jet ratios a convenient observable for study?

– Experimentally: systematics tend to cancel.

– Theoretical: scale uncertainties also tends to be weaker

– Visually: easy to interpret and much easier to see patterns [see next slide]
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Although NLO calculations contain one additional power of enhanced logarithms, this

might not be su�cient for high jet multiplicities. At NNLO, although there has been an

enormous amount of recent development [26], the number of fully di↵erential calculations

is limited, and an automated implementation is not foreseeable in the near future.

On the other hand, we know that jet radiation is enhanced by traceable logarithms.

This makes improved predictions for QCD observables based on resummation possible.

The general strategy is to redefine the perturbative series from powers of ↵s to including

the relevant logarithms; the simplified structure of these enhanced terms then allows for

a resummation to all orders. Once the resummed form is known we can match onto a

fixed order calculation and avoid double-counting. For Sudakov-type logarithms a general

method for this type of resummation is available [27], and for particular event shape ob-

servables an automated approach exists [28]. In LHC analyses, the resummation of finite

logarithms in the presence of a jet-veto scale is of interest [17, 29].

A numerical approach to resummation is provided by parton-shower simulations [30].

It is automated in the multi-purpose Monte Carlo generators Pythia [31], Herwig [32] and

Sherpa [33] to leading order in the strong coupling combined with the resummation of lead-

ing collinear logarithms (LO/LL). This method di↵ers from the previous approaches in that

the full spectrum of final state partons or hadrons is produced explicitly. While the parton

shower is well defined for relatively small transverse momenta of the jets it is not applicable

for hard jet radiation. However, this limitation is overcome by the CKKW [11], MLM [12],

and CKKW-L [34] jet-merging algorithms, that incorporate the tree-level matrix-element

corrections for the first few hardest emissions [30, 35].

A complementary strategy is provided by the MC@NLO [36] and POWHEG [37] ap-

proaches, that realize the matching of NLO calculations with parton showers. While these

methods guarantee NLO/LL accuracy only the first/hardest shower emission gets corrected

by the real-emission matrix element. Higher jet multiplicities are described in the parton-

shower approximation only. First attempts to combine the NLO/LL approaches with the

tree-level merging ansatz have been reported recently [38]. An unprecedented level of so-

phistication for predicting multi-jet final states is achieved by the promotion of merging

algorithms to next-to-leading order accuracy [39].

Even though we can nowadays simulate multi-jet events, a detailed understanding of

inclusive or exclusive n

jets

distributions at the LHC is still missing. Its universal features

have been studied since 1985 [7]. Scaling patterns can be conveniently displayed in the

ratio of successive exclusive jet cross-sections

R

(n+1)/n =
�n+1

�n
=

Pn+1

Pn
with Pn =

�n

�

tot

. (1.1)

We define the jet multiplicity n as the number of jets in addition to the hard process,

e.g. �
1

for pure QCD di-jets is experimentally a 3-jet final state. Jets which are part of the

hard process are not included in the scaling analysis because they do not arise from single

QCD emissions.
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The emergence of scaling in QCD jets

Observed Scaling Patterns

Staircase [Steve Ellis, Kleiss, Stirling (1985); Berends

(1989)]

– Ratios are constant
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2
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We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)

�

excl

n = R

n
1/0 ⌘ e

�bn (2.23)

For small values of y

cut

we should find a Poisson pattern in the exclusive photon

rates, which we confirm in Fig. 5. For larger y

cut

the di↵erent multiplicity distributions

start deviating from the Poisson pattern. The ratios are pushed apart from one another,

opposite to what we expect from a staircase pattern. The reason is that each emission

takes a non-negligible amount of the total energy of the event and suppresses the phase

space for subsequent emissions. Going back to the two main scaling patterns this means

that matrix element and final-state phase space e↵ects are not responsible for the transition

from Poisson to staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x

for di↵erent final state jet multiplicities; in that case we might observe an initial-state phase
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For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling
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Staircase [Steve Ellis, Kleiss, Stirling (1985), Berends (1989)] Poisson [Peskin & Schroder; Rainwater, Zeppenfeld (1997)]

• Ratios are constant (geometric) • Ratios are not constant

• Observed: UA1, Tevatron, LHC • Observed: Photons at LEP, LHC
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For small values of y

cut

we should find a Poisson pattern in the exclusive photon

rates, which we confirm in Fig. 5. For larger y

cut

the di↵erent multiplicity distributions

start deviating from the Poisson pattern. The ratios are pushed apart from one another,

opposite to what we expect from a staircase pattern. The reason is that each emission

takes a non-negligible amount of the total energy of the event and suppresses the phase

space for subsequent emissions. Going back to the two main scaling patterns this means

that matrix element and final-state phase space e↵ects are not responsible for the transition

from Poisson to staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x

for di↵erent final state jet multiplicities; in that case we might observe an initial-state phase
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we confirm in Fig. 5. For larger y
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from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to
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final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling
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amount of the total energy of the event and suppresses the phase space for subsequent
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ORIGIN OF SCALING PATTERNS

 1.  The ratio of the size of the primary emission to subsequent emission amplitude. 
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Figure 1. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

form-factor. Expanding the exponential we see that Eq. (2.1) represents an arbitrary

number of soft and collinearly enhanced emissions, either resolved or unresolved.

To describe a parton-shower simulated event we note that the QCD evolution proceeds

as an integration of the product Sudakov along the virtuality t,

�(t) =
Y

ext lines

�j(t) ⌘ e

��
. (2.3)

The product defining � is over the appropriate factors for each external line, where j

denotes the particle flavor. Limiting ourselves to final state splittings this expression only

contains evolution kernels as shown in Eq. (2.1), and it is by construction guaranteed to

exponentiate with an appropriate expression �. As long as � is fully local and does not

depend on previous emissions it is guaranteed to produce a Poisson distribution for the

multiplicities. The exponentiated form in Eq. (2.3) immediately identifies n̄ = �. This

statement does not depend on the form of � or its dependence on the hard scale t. All that

matters is that each splitting does not change the subsequent evolution. In the remainder

of this paper we define all emissions directly contained in the expansion of Eq. (2.3) as

primary with respect to the core process.

The first splitting in the parton shower picture defines the single emission probability.

Following Fig. 1 a second emission can then appear from the original leg or o↵ the first

emission. For the former, this emission is contained in Eq. (2.3) and does not change

the Poisson pattern. The latter changes the exponential; we refer to it as secondary with

respect to the original hard process. From a scaling perspective the relevant questions are

first, what is the relative size of the two contributions; and second if we can change the

individual strengths of primary and secondary emissions through kinematic cuts.

In the parton shower approximation we can associate specific integrals over virtuality

with individual partonic structures appearing in the final state evolution. An alternative

evolution ordered in a consistent variable (e.g. angle) is logarithmically equivalent. Using

this formalism the primary contribution to two gluon emission o↵ a hard quark shown in

Fig. 1 is

�

primary(Q2

, Q

2

0

) = c

primary

Z Q2

Q2
0

dt �(Q2

, t)�g(t)

Z Q2

Q2
0

dt

0 �(Q2

, t

0)�g(t
0) . (2.4)

The coe�cient cprimary which includes the Sudakovs associated with the hard line is process

dependent, as this hard line can be either a quark or a gluon. The two external scales are
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of this paper we define all emissions directly contained in the expansion of Eq. (2.3) as

primary with respect to the core process.

The first splitting in the parton shower picture defines the single emission probability.

Following Fig. 1 a second emission can then appear from the original leg or o↵ the first

emission. For the former, this emission is contained in Eq. (2.3) and does not change

the Poisson pattern. The latter changes the exponential; we refer to it as secondary with

respect to the original hard process. From a scaling perspective the relevant questions are

first, what is the relative size of the two contributions; and second if we can change the

individual strengths of primary and secondary emissions through kinematic cuts.

In the parton shower approximation we can associate specific integrals over virtuality

with individual partonic structures appearing in the final state evolution. An alternative

evolution ordered in a consistent variable (e.g. angle) is logarithmically equivalent. Using

this formalism the primary contribution to two gluon emission o↵ a hard quark shown in

Fig. 1 is
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The coe�cient cprimary which includes the Sudakovs associated with the hard line is process

dependent, as this hard line can be either a quark or a gluon. The two external scales are
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form-factor. Expanding the exponential we see that Eq. (2.1) represents an arbitrary

number of soft and collinearly enhanced emissions, either resolved or unresolved.
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The product defining � is over the appropriate factors for each external line, where j

denotes the particle flavor. Limiting ourselves to final state splittings this expression only

contains evolution kernels as shown in Eq. (2.1), and it is by construction guaranteed to

exponentiate with an appropriate expression �. As long as � is fully local and does not

depend on previous emissions it is guaranteed to produce a Poisson distribution for the

multiplicities. The exponentiated form in Eq. (2.3) immediately identifies n̄ = �. This

statement does not depend on the form of � or its dependence on the hard scale t. All that

matters is that each splitting does not change the subsequent evolution. In the remainder

of this paper we define all emissions directly contained in the expansion of Eq. (2.3) as

primary with respect to the core process.

The first splitting in the parton shower picture defines the single emission probability.

Following Fig. 1 a second emission can then appear from the original leg or o↵ the first

emission. For the former, this emission is contained in Eq. (2.3) and does not change

the Poisson pattern. The latter changes the exponential; we refer to it as secondary with

respect to the original hard process. From a scaling perspective the relevant questions are

first, what is the relative size of the two contributions; and second if we can change the

individual strengths of primary and secondary emissions through kinematic cuts.

In the parton shower approximation we can associate specific integrals over virtuality

with individual partonic structures appearing in the final state evolution. An alternative

evolution ordered in a consistent variable (e.g. angle) is logarithmically equivalent. Using

this formalism the primary contribution to two gluon emission o↵ a hard quark shown in

Fig. 1 is
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primary(Q2
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0
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primary

Z Q2
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0
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0) . (2.4)

The coe�cient cprimary which includes the Sudakovs associated with the hard line is process

dependent, as this hard line can be either a quark or a gluon. The two external scales are
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the scale Q of the hard process and the lower cuto↵ scale Q

0

. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is

absorbed in c

primary. The simplest secondary contribution also shown in Fig. 1 is,

�

secondary(Q2

, Q

2

0

) = c

secondary

Z Q2

Q2
0

dt�(Q2

, t)�g(t)

Z t

Q2
0

dt

0 �(t, t0)�g(t
0) . (2.5)

The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.

(1)
↵s

⇡

log2
Q

Q

0

� 1

In this limit we expand Eq. (2.4) and Eq. (2.5) around Q

0

/Q ! 0 and find the leading

terms

�

primary =
c

primary

4

"
↵s

CA
log2

Q

Q

0

�
s

4↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆#

�

secondary =
c

secondary

4


(
p
2� 1)

r
↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆�
. (2.6)

Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.

(2)
↵s

⇡

log2
Q

Q

0

⌧ 1

Taking this limit of Eq. (2.4) and Eq. (2.5), we find

�

primary(Q2

, Q

2

0

) = c

primary

↵

2

s

4(2⇡)2
log4

Q

Q

0

+ O
✓
↵

3

s log
6

Q

Q

0

◆

= 6
c

primary

c

secondary

�

secondary(Q2

, Q

2

0

) . (2.7)

The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling
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Durham Algorithm 
[Catani, Dokshitzer, Olsson, Turnock, Webber] 

Generalized kT Algorithm
 [EG, Gripaios, Schumann, Webber]

Diagrammatic
 representation

Poisson

(relative size depends on energy scale difference, jet algorithm/size, color structure...etc)
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We solve the gluon generating function by iteration to third order in u.
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In the result for �(3)
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We solve the gluon generating function by iteration to third order in u.
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SUMMARY ON ORIGIN OF SCALING PATTERNS

 1.  We expect Poisson scaling for processes/selections with large scale separation at 

low multiplicities.

 2.  Staircase (geometric) scaling takes over for n > n (n obtained from Poisson fit).
 3.  Poisson extrapolation breaks down in the case of the generalized kT for small jets.  
 4.  High multiplicity geometric scaling is a very generic prediction of QCD. 
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APPLICATION FOR JET SCALING

The emergence of scaling in QCD jets

Validation of tools and scaling hypothesis

Atlas study on jets between gaps as a function of p? and �y
based on RIVET public-analysis from ATLAS JHEP 1109 (2011) 053
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Same for Z + jets analysis/figures

• Atlas public analysis on jet activity in rapidity 
gaps between “tagging” jets (ATLAS)

The emergence of scaling in QCD jets

Jet Vetos in Higgs searches

Higgs searches via Weak Boson Fusion

– Early sensitivity in H ! WW ?/⌧⌧/�� [both Atlas and CMS dedicated WBF searches ]

– Large background from V (V ) + jets at O(↵2
s

)

Higgs WBF signal Z + jets background

Central Jet Veto [or how QCD can actually help us for once!]

– Widely separated (in ⌘) tagging jets and veto “in-between” QCD activity

– Signal gives less soft in-between
QCD radiation [Rainwater, Zeppenfeld]

– N
jet

distribution give us valuable
information on central jets

jet 1

jet 2

veto region

veto region

Proton Proton

Hard Process

• Gap fraction observable sensitive to many 
different types of QCD effects.

n
n+1

1/0 2/1 3/2 4/3 5/4 6/5

nn+
1

R

0

0.2

0.4

0.6

0.8

1

Z + jets
 150 GeV≥ lead

T
p

 =  30 GeV
V

p

 = 0.968nPoisson   

 ratio
T

p
0 0.2 0.4 0.6 0.8 1

 [p
b]

 ra
tio

T
dp

σd

0

1

2

3

4

5

Z + jets
 150 GeV≥ lead

T
p

 =  30 GeV
V

p

/leadst1

/leadnd2

st/1nd2

Figure 8. Left panel: exclusive jet ratios for Z + jets production at
p
S = 7 TeV. We require a

leading jet with p

lead
T � 150 GeV. All other jets have pT � pV = 30 GeV. The line shows a Poisson

shape with n̄ extracted from the first bin. Right panel: cross sections as a function of the event-wise
ratios of the jet transverse momenta in inclusive Z +3 jet production. While the leading jet has to
pass pleadT � 150 GeV additional jets are selected uniformly with just pT � pV = 30 GeV.

jet transverse momenta defined event-by-event. For this distribution we for once deviate

from our usual exclusive jet counting and consider events with at least three jets in the

final state. We consider the pT ratios first-over-leading (black), second-over-leading (green)

and second-over-first jet (red). With the leading jet pT � 150 GeV and the additional jets

selected uniformly with pT � 30 GeV we expect the first and second jet to peak around

the selection cut. This is confirmed by the simulated results that exhibit strong peaks

for the corresponding ratios around p

1st

T /p

lead

T ⇡ 0.2 and p

2nd

T /p

lead

T ⇡ 0.2. However, it is

interesting to note that the ratio p

2nd

T /p

1st

T does not peak around 1. Rather QCD favors

the first radiated jet to be significantly harder than the second. The obtained distribution

in fact turns out to be more or less flat between 0.25 and 1. It is certainly interesting to

study these observables in addition to the n
jets

distribution, as they contain complementary

information on the underlying QCD dynamics.

4.2 QCD gap jets

An interesting set of observables from the perspective of multi-jet final states are gap frac-

tions or gap jets. In that case we require a specific kinematic structure of hard and widely

separated jets and count the QCD jets in between. The core process is the production of

two widely separated hard jets.

A recent ATLAS study [65] identifies two forward jets, so-called tagging jets, either as

the highest pT (selection A) or the most forward and backward in rapidity (selection B).

The core di-jet system is defined in terms of p̄T = (pT,1 + pT,2)/2 and �y = |y
1

� y

2

|. The
gap fraction P

0

= �

0

/�

tot

is given by all events with no additional jet in between the two
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• Scenarios of NP giving an excess in jets starting 
at some multiplicity (8?).
• Standard background subtraction at high 
multiplicity many drawback.
• Looking for a deviation from scaling a possible 
way forward.

The emergence of scaling in QCD jets

Observed Scaling Patterns

Staircase [Steve Ellis, Kleiss, Stirling (1985); Berends

(1989)]

– Ratios are constant
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CONCLUSIONS

9

• Njets (ratio) distribution interesting from a theory perspective (and generically important to 

many analyses).

• The combination (or coincidence) of secondary splittings (at high multiplicity) with PDF 

effects cause the LHC jet rates to be mostly constant over the whole range.

• Strong need for resummed jet rates at Hadron colliders...our generalized kT GF is an 

attempt at moving in this direction.

• Offers simple search techniques (not depending on MonteCarlo) but we’re still thinking 

about other applications.
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Prototypical example: Soft-photon radiation in QED
• Fully factorized form of the matrix element (eikonal approximation) [e.g. Peskin and Schroeder]

• Integrating over phase space, including 1/n! for identical bosons in the final state,

The emergence of scaling in QCD jets

QED and the emergence of Poisson scaling

Basic synopsis of Poisson radiation pattern from QED [Peskin & Schroder; Weinberg]

– Fully factorized form of the matrix element (Eikonal approximation)

– Phase space factor 1/n! for identical bosons in the final state
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Crucial theorem: Addition of independent Poisson processes

– Suppose two Poisson processes N1 and N2 with Poisson expectations n̄1
and n̄2 are independent. The counting process N defined by
N(t) = N1(t) + N2(t) is a Poisson process with rate function n̄ given by
n̄ = n̄1 + n̄2.

) All QED processes give Poisson [in soft collinear limit]
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e
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� + n� at
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For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.
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10

BASIS OF THE POISSON DISTRIBUTION

q

k

q + k 

• Adding together (independent) Poisson processes generates another Poisson 

process (rate parameters simply add together) 

• Matrix element corrections of course important for the rates (unless very log 

enhanced), but small effect on the scaling. 
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using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)
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(2.26)

For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y
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. (2.22)

�

excl

n = R

n
1/0 ⌘ e

�bn (2.23)

�

excl

n =
e

�n̄
n̄

n

n!
(2.24)

�

µ /

q + /

k

(q + k)2
! q

µ

q · k (2.25)

) �n ⇠ L

n

n!
e

�L with L ⇠ ↵

⇡

log2
✓
Ehard

Esoft

◆
(2.26)

For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.
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The emergence of scaling in QCD jets

Subsequent splittings and the emergence of staircase

More realistic model: e+e� ! qq̄ + jets

– Leading log and next-to-leading log jet rates available for the Durham
measure (we calculate to O(↵4)) [Catani, Dokshitzer, Olsson, Turnock, Webber (1991); Webber (2010)]
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• Expand in powers of aL2, equivalent to not too large single emission probability.
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Figure 2. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

the scale Q of the hard process and the lower cuto↵ scale Q

0

. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is

absorbed in c

primary. The simplest secondary contribution also shown in Fig. 2 is,

�

secondary(Q2

, Q

2

0

) = c

secondary

Z Q2

Q2
0

dt�(Q2

, t)�g(t)

Z t

Q2
0

dt

0 �(t, t0)�g(t
0) . (2.5)

The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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In this limit we expand Eq. (2.4) and Eq. (2.5) around Q

0

/Q ! 0 and find the leading

terms

�

primary =
c

primary

4

"
↵s

CA
log2

Q

Q

0

�
s

4↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆#

�

secondary =
c

secondary

4


(
p
2� 1)

r
↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆�
. (2.6)

Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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Fixed order calculation for jet fractions
• Using the Durham algorithm in e+e- [Catani, Dokshitzer, Olsson, Turnock, Webber (1991)] 
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)

For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x

for di↵erent final state jet multiplicities; in that case we might observe an initial-state phase

space e↵ect. Second, jets at hadron colliders are typically generated through initial state
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)

L ⌘ log
1

y

cut

and a ⌘ ↵S
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(2.23)

For small values of y

cut

we should find a Poisson pattern in the exclusive photon

rates, which we confirm in Fig. 5. For larger y

cut

the di↵erent multiplicity distributions

start deviating from the Poisson pattern. The ratios are pushed apart from one another,

opposite to what we expect from a staircase pattern. The reason is that each emission

takes a non-negligible amount of the total energy of the event and suppresses the phase

space for subsequent emissions. Going back to the two main scaling patterns this means

that matrix element and final-state phase space e↵ects are not responsible for the transition

from Poisson to staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x
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• Expand in powers of aL2, equivalent to not too large single emission probability.

The emergence of scaling in QCD jets

Subsequent splittings and the emergence of staircase

More realistic model: e+e� ! qq̄ + jets

– Leading log and next-to-leading log jet rates available for the Durham
measure (we calculate to O(↵4)) [Catani, Dokshitzer, Olsson, Turnock, Webber (1991); Webber (2010)]
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Figure 2. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

the scale Q of the hard process and the lower cuto↵ scale Q

0

. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is

absorbed in c

primary. The simplest secondary contribution also shown in Fig. 2 is,

�

secondary(Q2
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0) . (2.5)

The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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Fixed order calculation for jet fractions
• Using the Durham algorithm in e+e- [Catani, Dokshitzer, Olsson, Turnock, Webber (1991)] 
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)

For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x

for di↵erent final state jet multiplicities; in that case we might observe an initial-state phase

space e↵ect. Second, jets at hadron colliders are typically generated through initial state
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)
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and a ⌘ ↵S
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(2.23)

For small values of y

cut

we should find a Poisson pattern in the exclusive photon

rates, which we confirm in Fig. 5. For larger y

cut

the di↵erent multiplicity distributions

start deviating from the Poisson pattern. The ratios are pushed apart from one another,

opposite to what we expect from a staircase pattern. The reason is that each emission

takes a non-negligible amount of the total energy of the event and suppresses the phase

space for subsequent emissions. Going back to the two main scaling patterns this means

that matrix element and final-state phase space e↵ects are not responsible for the transition

from Poisson to staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x
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• Expand in powers of aL2, equivalent to not too large single emission probability.

The emergence of scaling in QCD jets

Subsequent splittings and the emergence of staircase

More realistic model: e+e� ! qq̄ + jets

– Leading log and next-to-leading log jet rates available for the Durham
measure (we calculate to O(↵4)) [Catani, Dokshitzer, Olsson, Turnock, Webber (1991); Webber (2010)]
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Figure 2. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

the scale Q of the hard process and the lower cuto↵ scale Q

0

. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is

absorbed in c

primary. The simplest secondary contribution also shown in Fig. 2 is,

�
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2

0

) = c

secondary

Z Q2

Q2
0

dt�(Q2

, t)�g(t)
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Q2
0

dt

0 �(t, t0)�g(t
0) . (2.5)

The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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In this limit we expand Eq. (2.4) and Eq. (2.5) around Q

0

/Q ! 0 and find the leading

terms

�

primary =
c

primary

4

"
↵s

CA
log2

Q

Q

0

�
s

4↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆#

�

secondary =
c

secondary

4


(
p
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◆�
. (2.6)

Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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Fixed order calculation for jet fractions
• Using the Durham algorithm in e+e- [Catani, Dokshitzer, Olsson, Turnock, Webber (1991)] 
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2
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We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)

For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x

for di↵erent final state jet multiplicities; in that case we might observe an initial-state phase

space e↵ect. Second, jets at hadron colliders are typically generated through initial state
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L ⌘ log
1

y

cut

and a ⌘ ↵S

⇡

(2.23)

For small values of y

cut

we should find a Poisson pattern in the exclusive photon

rates, which we confirm in Fig. 5. For larger y

cut

the di↵erent multiplicity distributions

start deviating from the Poisson pattern. The ratios are pushed apart from one another,

opposite to what we expect from a staircase pattern. The reason is that each emission

takes a non-negligible amount of the total energy of the event and suppresses the phase

space for subsequent emissions. Going back to the two main scaling patterns this means

that matrix element and final-state phase space e↵ects are not responsible for the transition

from Poisson to staircase scaling.

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x
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• Deviation from the Poisson in the fixed order expansion 

purely due to secondary (vs. primary) emissions
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Comparison of fixed order analytic results for jet fractions

 1.  At high multiplicities subsequent splittings take-over and seem to lead to geometric scaling.
 2.  Lower multiplicities neither Poisson or staircase like behavior.
 3.  Doesn’t really answer our questions in either regime!  (need resummed rates)

Remarks from the fixed order calculations
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• Jet rates include the unresolved components to all-orders (are physically valid even 

when                  ). 
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Taking this limit of Eq. (2.4) and Eq. (2.5), we find

�

primary(Q2

, Q

2

0

) = c

primary

↵

2

s

4(2⇡)2
log4

Q

Q

0

+ O
✓
↵

3

s log
6

Q

Q

0

◆

= 6
c

primary

c

secondary

�

secondary(Q2

, Q

2

0

) . (2.7)

The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.

For a known series of functions Pn we define

� =
1X

n=0

u

n
Pn�1

with Pn�1

=
1

n!

d

n

du

n
�

����
u=0

. (2.8)

Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.

The quark and gluon generating functionals to next-to-leading logarithmic accuracy

are

�q(Q
2) = u exp

"Z Q2

Q2
0

dt �q(Q
2

, t) (�g(t)� 1)

#

�g(Q
2) = u exp

"Z Q2

Q2
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dt

 
�g(Q

2

, t) (�g(t)� 1) + �f (t)

 
�2

q(t)

�g(t)
� 1

!!#
. (2.9)
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to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that
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Generating functionals for jet rates (resummed to NLL)
• For the Durham algorithm [Catani, Dokshitzer, Olsson, Turnock, Webber (1991)] 
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bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.
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• Derivatives with respect to “source” u at u=0, produce (resummed) exclusive 

multiplicities. (first moment corresponds to average jet multiplicity) 
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RESUMMED RATES IN QCD: SOME FORMALISM

As close as one can get to an analytic 

description of a Parton shower. 

Although NLO calculations contain one additional power of enhanced logarithms, this

might not be su�cient for high jet multiplicities. At NNLO, although there has been an

enormous amount of recent development [26], the number of fully di↵erential calculations

is limited, and an automated implementation is not foreseeable in the near future.

On the other hand, we know that jet radiation is enhanced by traceable logarithms.

This makes improved predictions for QCD observables based on resummation possible.

The general strategy is to redefine the perturbative series from powers of ↵s to including

the relevant logarithms; the simplified structure of these enhanced terms then allows for

a resummation to all orders. Once the resummed form is known we can match onto a

fixed order calculation and avoid double-counting. For Sudakov-type logarithms a general

method for this type of resummation is available [27], and for particular event shape ob-

servables an automated approach exists [28]. In LHC analyses, the resummation of finite

logarithms in the presence of a jet-veto scale is of interest [17, 29].

A numerical approach to resummation is provided by parton-shower simulations [30].

It is automated in the multi-purpose Monte Carlo generators Pythia [31], Herwig [32] and

Sherpa [33] to leading order in the strong coupling combined with the resummation of lead-

ing collinear logarithms (LO/LL). This method di↵ers from the previous approaches in that

the full spectrum of final state partons or hadrons is produced explicitly. While the parton

shower is well defined for relatively small transverse momenta of the jets it is not applicable

for hard jet radiation. However, this limitation is overcome by the CKKW [11], MLM [12],

and CKKW-L [34] jet-merging algorithms, that incorporate the tree-level matrix-element

corrections for the first few hardest emissions [30, 35].

A complementary strategy is provided by the MC@NLO [36] and POWHEG [37] ap-

proaches, that realize the matching of NLO calculations with parton showers. While these

methods guarantee NLO/LL accuracy only the first/hardest shower emission gets corrected

by the real-emission matrix element. Higher jet multiplicities are described in the parton-

shower approximation only. First attempts to combine the NLO/LL approaches with the

tree-level merging ansatz have been reported recently [38]. An unprecedented level of so-

phistication for predicting multi-jet final states is achieved by the promotion of merging

algorithms to next-to-leading order accuracy [39].

Even though we can nowadays simulate multi-jet events, a detailed understanding of

inclusive or exclusive n

jets

distributions at the LHC is still missing. Its universal features

have been studied since 1985 [7]. Scaling patterns can be conveniently displayed in the

ratio of successive exclusive jet cross-sections

R

(n+1)/n =
�n+1

�n
=

Pn+1

Pn
with Pn =

�n

�

tot

. (1.1)

�n+1

� �n (1.2)

We define the jet multiplicity n as the number of jets in addition to the hard process,

e.g. �
1

for pure QCD di-jets is experimentally a 3-jet final state. Jets which are part of the
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Figure 1. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

form-factor. Expanding the exponential we see that Eq. (2.1) represents an arbitrary

number of soft and collinearly enhanced emissions, either resolved or unresolved.

To describe a parton-shower simulated event we note that the QCD evolution proceeds

as an integration of the product Sudakov along the virtuality t,

�(t) =
Y

ext lines

�j(t) ⌘ e

��
. (2.3)

The product defining � is over the appropriate factors for each external line, where j

denotes the particle flavor. Limiting ourselves to final state splittings this expression only

contains evolution kernels as shown in Eq. (2.1), and it is by construction guaranteed to

exponentiate with an appropriate expression �. As long as � is fully local and does not

depend on previous emissions it is guaranteed to produce a Poisson distribution for the

multiplicities. The exponentiated form in Eq. (2.3) immediately identifies n̄ = �. This

statement does not depend on the form of � or its dependence on the hard scale t. All that

matters is that each splitting does not change the subsequent evolution. In the remainder

of this paper we define all emissions directly contained in the expansion of Eq. (2.3) as

primary with respect to the core process.

The first splitting in the parton shower picture defines the single emission probability.

Following Fig. 1 a second emission can then appear from the original leg or o↵ the first

emission. For the former, this emission is contained in Eq. (2.3) and does not change

the Poisson pattern. The latter changes the exponential; we refer to it as secondary with

respect to the original hard process. From a scaling perspective the relevant questions are

first, what is the relative size of the two contributions; and second if we can change the

individual strengths of primary and secondary emissions through kinematic cuts.

In the parton shower approximation we can associate specific integrals over virtuality

with individual partonic structures appearing in the final state evolution. An alternative

evolution ordered in a consistent variable (e.g. angle) is logarithmically equivalent. Using

this formalism the primary contribution to two gluon emission o↵ a hard quark shown in

Fig. 1 is

�

primary(Q2

, Q

2

0

) = c

primary

Z Q2

Q2
0

dt �(Q2

, t)�g(t)

Z Q2

Q2
0

dt

0 �(Q2

, t

0)�g(t
0) . (2.4)

The coe�cient cprimary which includes the Sudakovs associated with the hard line is process

dependent, as this hard line can be either a quark or a gluon. The two external scales are
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the Poisson pattern. The latter changes the exponential; we refer to it as secondary with
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primary. The simplest secondary contribution also shown in Fig. 1 is,
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The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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Their ratio scales like �primary
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secondary / p
↵s logQ/Q
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, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling
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Figure 5: Left: Pure parton shower matched to p? > 80GeV fully inclusive with the standard
jet definitions. Right: Same event sample but enforcing a non-splitting probability in the hard
process by requiring the p̄? for the jets above 60GeV. In the right hand plot we expect that the
full matched result will produce better Poisson scaling.
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Figure 2. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.
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The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.
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Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.

The quark and gluon generating functionals to next-to-leading logarithmic accuracy

are
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. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is
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primary. The simplest secondary contribution also shown in Fig. 2 is,
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The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error
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secondary / p
↵s logQ/Q
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, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.
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Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.

The quark and gluon generating functionals to next-to-leading logarithmic accuracy

are
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q
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> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.

For a known series of functions Pn we define

� =
1X

n=0

u

n
Pn�1

with fn�1

=
1

n!

d

n

du

n
�

����
u=0

. (2.8)

Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.

The quark and gluon generating functionals to next-to-leading logarithmic accuracy

are

�q(Q
2) = u exp

"Z Q2

Q2
0

dt �q(Q
2

, t) (�g(t)� 1)

#

�g(Q
2) = u exp

"Z Q2

Q2
0

dt

 
�g(Q

2

, t) (�g(t)� 1) + �f (t)

 
�2

q(t)

�g(t)
� 1

!!#
. (2.9)
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All multiplicity proof for the scaling patterns
• For Poisson this is more or less simple; the integral for large Q is dominated by region 

in t space close to Q0.

• In pure YM keeping leading powers of (Q - Q0)/Q, corresponds to not too large single 

emission probability (still need log enhancement).

 DURHAM GENERATING FUNCTIONAL
The splitting kernels are defined in Eq. (2.2); gluon splitting to quarks, described by the

kernel �f (t), is suppressed by a power of the logarithm. Assuming Q � Q

0

, or a high

emission probability as discussed in Section 2.1, the largest contribution to the t integration

comes from the region where t ⇡ Q

2

0

and �q,g(t) ⇡ �q,g(Q2

0

) ⇡ u. Both evolution equations

then read

�j(Q
2) = u exp

"Z Q2

Q2
0

dt �j(Q
2

, t) (u� 1)

#
=

u�j(Q2)

�j(Q2)u
, (2.10)

with the Sudakov factor defined in Eq. (2.1). For the jet rates we find a Poisson distribution

Pn�1

= �j(Q
2)

| log�j(Q2)|n�1

(n� 1)!
or R

(n+1)/n =
| log�j(Q2)|

n+ 1
. (2.11)

Again, the jet counting reflects our convention that of n jets only n � 1 are radiated o↵

the hard line. The result in Eq. (2.11) reflects the same underlying physics as Eq. (2.6),

namely a universal logarithmic enhancement of the primary emission over subsequent ones.

The latter also covers the sub-leading terms to the pure Poisson distribution, and thus

determines the size of the leading corrections to Eq. (2.11). For a hard quark as well as for

a hard gluon line this Poisson distribution contains only logarithmically enhanced gluon

radiation. According to the approximation of Eq. (2.10), any subsequent splitting of the

radiated gluons is subleading.

To investigate deviations from this perfect Poisson pattern we first study jet fractions

Pn for up to four emissions in e

+

e

� collisions. We analytically derive them using the

generating functional, Eq. (2.8), and show the results in Appendix B. Expanding them to

O(↵5

s) and combining this with inclusive unitarity
P

Pn = 1 at each fixed order gives the

double-logarithmically enhanced contribution for n  5. They show the expected Poisson

pattern for the abelian terms / CF ,

Pn =
[�q(Q2)]2

n!

 Z Q2

Q2
0

dt�q(Q
2

, t)�g(t)

!n

. (2.12)

The additional gluon Sudakov compared to Eq. (2.11) takes into account that the radiated

gluons do not split in the primary contributions. The non-abelian terms / CA do not

exponentiate with respect to the qq̄ final state. They deviate from Poisson scaling starting

at two additional jets and provide sensitivity to the triple-gluon vertex [46]. The secondary

contribution to two-jet emission is color enhanced via CA/CF , but ultimately smaller than

the Poisson term due to the averaging factor over the second splitting function. For the

leading double logarithm this is a simple suppression factor of 1/6. In Appendix A we

compare the LL jet rates and a toy model for an iterated Poisson process.

In addition to purely non-abelian splittings, mixed primary and secondary contribu-

tions also deviate from the Poisson pattern. This e↵ect we can study in the average jet

– 9 –

Eq. (2.14) starts at ✏2. Keeping only terms linear in ✏ we obtain the simple form

d�g(Q2)

dQ

2

⇡ �g(Q
2) �̃g(Q

2

, Q

2

0

)
�
�g(Q

2)� 1
�
. (2.17)

Including the boundary condition �g(Q2

0

) = u we can solve this,

�g(Q
2) =

1

1 +
(1� u)

u�̃g(Q2)

with �̃g(Q
2) = exp

"
�
Z Q2

Q2
0

dt�̃g(t, Q
2

0

)

#
. (2.18)

Neglecting the e↵ects of the running coupling, �̃g(Q2) is a Sudakov form factor. Including

the running coupling, Eq. (2.18) di↵ers from the standard Sudakov in Eq. (2.1) starting at

higher orders,
�̃g(Q2)

�g(Q2)
= exp

✓
� ↵

2

s

12⇡
b

0

log3
Q

2

Q

2

0

◆
. (2.19)

Taking derivatives of the generating functional in Eq. (2.18) at u = 0 we can compute the

exclusive jet rates

Pn�1

= �̃g(Q
2)
⇣
1� �̃g(Q

2)
⌘n�1

or R

(n+1)/n = 1� �̃g(Q
2) . (2.20)

These constant ratios define a staircase pattern. Comparing Eq. (2.11) and Eq. (2.20)

we see that in two distinct phase space regimes we find two clear scaling patterns for the

Yang-Mills or pure gluon case. Both of them can arise in final state gluon radiation, which

means they should in principle be observable in e

+

e

� ! jets events.

The all-order theoretical predictions for Poisson scaling, Eq. (2.11), and staircase scal-

ing, Eq. (2.20), we can compare to simulated e

+

e

� ! jets events. To cover both, a large

scale separation Q � Q

0

as well as a democratic scale Q ⇠ Q

0

, we use a large center-

of-mass energy of 2 TeV and a very small lower cuto↵ y

cut

= 5 · 10�7 for the Durham

jet-reconstruction algorithm [47]. In Fig. 3 we show jet ratios R

(n+1)/n for a large range

of n. Indeed, we observe Poisson as well as staircase scaling. The same behavior is known

from hadron colliders for example in pp ! �+jets production [8]: for relatively low n values

the emission is dominated by large scale di↵erences, inducing a Poisson pattern. For large

jet multiplicity individual emissions are not a↵ected by a large scale di↵erence, so we see

a staircase tail. While this transition is a solid QCD prediction it has not been studied

experimentally (yet).

2.3 Matrix element corrections

In all of the above discussion we only assume logarithmically induced emission and neglect

any kind of phase space e↵ects. A simple test case for the relative contributions of primary

vs subsequent emissions including additional phase space information is two-gluon emission

from a qq̄ dipole. The squared matrix element for strongly ordered two-gluon emissions

is [49]

|M(p
1

, p

2

)|2 = 32CF

pT,1pT,2


CA

✓
cosh(⌘

1

� ⌘

2

)

cosh(⌘
1

� ⌘

2

)� cos(�
1

� �

2

)
� 1

◆
+ 2CF

�
, (2.21)
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Eq. (2.14) starts at ✏2. Keeping only terms linear in ✏ we obtain the simple form

d�g(Q2)

dQ

2

⇡ �g(Q
2) �̃g(Q

2

, Q

2

0

)
�
�g(Q

2)� 1
�
. (2.17)

Including the boundary condition �g(Q2

0

) = u we can solve this,

�g(Q
2) =

1

1 +
(1� u)

u�̃g(Q2)

with �̃g(Q
2) = exp

"
�
Z Q2

Q2
0

dt�̃g(t, Q
2

0

)

#
. (2.18)

Neglecting the e↵ects of the running coupling, �̃g(Q2) is a Sudakov form factor. Including

the running coupling, Eq. (2.18) di↵ers from the standard Sudakov in Eq. (2.1) starting at

higher orders,
�̃g(Q2)

�g(Q2)
= exp

✓
� ↵

2

s

12⇡
b

0

log3
Q

2

Q

2

0

◆
. (2.19)

Taking derivatives of the generating functional in Eq. (2.18) at u = 0 we can compute the

exclusive jet rates

Pn�1

= �̃g(Q
2)
⇣
1� �̃g(Q

2)
⌘n�1

or R

(n+1)/n = 1� �̃g(Q
2) . (2.20)

These constant ratios define a staircase pattern. Comparing Eq. (2.11) and Eq. (2.20)

we see that in two distinct phase space regimes we find two clear scaling patterns for the

Yang-Mills or pure gluon case. Both of them can arise in final state gluon radiation, which

means they should in principle be observable in e

+

e

� ! jets events.

The all-order theoretical predictions for Poisson scaling, Eq. (2.11), and staircase scal-

ing, Eq. (2.20), we can compare to simulated e

+

e

� ! jets events. To cover both, a large

scale separation Q � Q

0

as well as a democratic scale Q ⇠ Q

0

, we use a large center-

of-mass energy of 2 TeV and a very small lower cuto↵ y

cut

= 5 · 10�7 for the Durham

jet-reconstruction algorithm [47]. In Fig. 3 we show jet ratios R

(n+1)/n for a large range

of n. Indeed, we observe Poisson as well as staircase scaling. The same behavior is known

from hadron colliders for example in pp ! �+jets production [8]: for relatively low n values

the emission is dominated by large scale di↵erences, inducing a Poisson pattern. For large

jet multiplicity individual emissions are not a↵ected by a large scale di↵erence, so we see

a staircase tail. While this transition is a solid QCD prediction it has not been studied

experimentally (yet).

2.3 Matrix element corrections

In all of the above discussion we only assume logarithmically induced emission and neglect

any kind of phase space e↵ects. A simple test case for the relative contributions of primary

vs subsequent emissions including additional phase space information is two-gluon emission

from a qq̄ dipole. The squared matrix element for strongly ordered two-gluon emissions

is [49]

|M(p
1

, p

2

)|2 = 32CF

pT,1pT,2


CA

✓
cosh(⌘

1

� ⌘

2

)

cosh(⌘
1

� ⌘

2

)� cos(�
1

� �

2

)
� 1

◆
+ 2CF

�
, (2.21)
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The splitting kernels are defined in Eq. (2.2); gluon splitting to quarks, described by the

kernel �f (t), is suppressed by a power of the logarithm. Assuming Q � Q

0

, or a high

emission probability as discussed in Section 2.1, the largest contribution to the t integration

comes from the region where t ⇡ Q

2

0

and �q,g(t) ⇡ �q,g(Q2

0

) ⇡ u. Both evolution equations

then read

�j(Q
2) = u exp

"Z Q2

Q2
0

dt �j(Q
2

, t) (u� 1)

#
=

u�j(Q2)

�j(Q2)u
, (2.10)

with the Sudakov factor defined in Eq. (2.1). For the jet rates we find a Poisson distribution

Pn�1

= �j(Q
2)

| log�j(Q2)|n�1

(n� 1)!
or R

(n+1)/n =
| log�j(Q2)|

n+ 1
. (2.11)

Again, the jet counting reflects our convention that of n jets only n � 1 are radiated o↵

the hard line. The result in Eq. (2.11) reflects the same underlying physics as Eq. (2.6),

namely a universal logarithmic enhancement of the primary emission over subsequent ones.

The latter also covers the sub-leading terms to the pure Poisson distribution, and thus

determines the size of the leading corrections to Eq. (2.11). For a hard quark as well as for

a hard gluon line this Poisson distribution contains only logarithmically enhanced gluon

radiation. According to the approximation of Eq. (2.10), any subsequent splitting of the

radiated gluons is subleading.

To investigate deviations from this perfect Poisson pattern we first study jet fractions

Pn for up to four emissions in e

+

e

� collisions. We analytically derive them using the

generating functional, Eq. (2.8), and show the results in Appendix B. Expanding them to

O(↵5

s) and combining this with inclusive unitarity
P

Pn = 1 at each fixed order gives the

double-logarithmically enhanced contribution for n  5. They show the expected Poisson

pattern for the abelian terms / CF ,

Pn =
[�q(Q2)]2

n!

 Z Q2

Q2
0

dt�q(Q
2

, t)�g(t)

!n

. (2.12)

The additional gluon Sudakov compared to Eq. (2.11) takes into account that the radiated

gluons do not split in the primary contributions. The non-abelian terms / CA do not

exponentiate with respect to the qq̄ final state. They deviate from Poisson scaling starting

at two additional jets and provide sensitivity to the triple-gluon vertex [46]. The secondary

contribution to two-jet emission is color enhanced via CA/CF , but ultimately smaller than

the Poisson term due to the averaging factor over the second splitting function. For the

leading double logarithm this is a simple suppression factor of 1/6. In Appendix A we

compare the LL jet rates and a toy model for an iterated Poisson process.

In addition to purely non-abelian splittings, mixed primary and secondary contribu-

tions also deviate from the Poisson pattern. This e↵ect we can study in the average jet
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Gives Poisson ratios:

Eq. (2.14) starts at ✏2. Keeping only terms linear in ✏ we obtain the simple form

d�g(Q2)

dQ

2

⇡ �g(Q
2) �̃g(Q

2

, Q

2

0

)
�
�g(Q

2)� 1
�
. (2.17)

Including the boundary condition �g(Q2

0

) = u we can solve this,

�g(Q
2) =

1

1 +
(1� u)

u�̃g(Q2)

with �̃g(Q
2) = exp

"
�
Z Q2

Q2
0

dt�̃g(t, Q
2

0

)

#
. (2.18)

Neglecting the e↵ects of the running coupling, �̃g(Q2) is a Sudakov form factor. Including

the running coupling, Eq. (2.18) di↵ers from the standard Sudakov in Eq. (2.1) starting at

higher orders,
�̃g(Q2)

�g(Q2)
= exp

✓
� ↵

2

s

12⇡
b

0

log3
Q

2

Q

2

0

◆
. (2.19)

Taking derivatives of the generating functional in Eq. (2.18) at u = 0 we can compute the

exclusive jet rates

Pn�1

= �̃g(Q
2)
⇣
1� �̃g(Q

2)
⌘n�1

or R

(n+1)/n = 1� �̃g(Q
2) . (2.20)

These constant ratios define a staircase pattern. Comparing Eq. (2.11) and Eq. (2.20)

we see that in two distinct phase space regimes we find two clear scaling patterns for the

Yang-Mills or pure gluon case. Both of them can arise in final state gluon radiation, which

means they should in principle be observable in e

+

e

� ! jets events.

The all-order theoretical predictions for Poisson scaling, Eq. (2.11), and staircase scal-

ing, Eq. (2.20), we can compare to simulated e

+

e

� ! jets events. To cover both, a large

scale separation Q � Q

0

as well as a democratic scale Q ⇠ Q

0

, we use a large center-

of-mass energy of 2 TeV and a very small lower cuto↵ y

cut

= 5 · 10�7 for the Durham

jet-reconstruction algorithm [47]. In Fig. 3 we show jet ratios R

(n+1)/n for a large range

of n. Indeed, we observe Poisson as well as staircase scaling. The same behavior is known

from hadron colliders for example in pp ! �+jets production [8]: for relatively low n values

the emission is dominated by large scale di↵erences, inducing a Poisson pattern. For large

jet multiplicity individual emissions are not a↵ected by a large scale di↵erence, so we see

a staircase tail. While this transition is a solid QCD prediction it has not been studied

experimentally (yet).

2.3 Matrix element corrections

In all of the above discussion we only assume logarithmically induced emission and neglect

any kind of phase space e↵ects. A simple test case for the relative contributions of primary

vs subsequent emissions including additional phase space information is two-gluon emission

from a qq̄ dipole. The squared matrix element for strongly ordered two-gluon emissions

is [49]

|M(p
1

, p

2

)|2 = 32CF

pT,1pT,2


CA

✓
cosh(⌘

1

� ⌘

2

)

cosh(⌘
1

� ⌘

2

)� cos(�
1

� �

2

)
� 1

◆
+ 2CF

�
, (2.21)
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Gives Staircase ratios:

• High multiplicity proof of Staircase tale in large emission probability limit an empirical 

fact, sets in at                  (number of Poisson breaking terms grows as a function of    ).

Although NLO calculations contain one additional power of enhanced logarithms, this

might not be su�cient for high jet multiplicities. At NNLO, although there has been an

enormous amount of recent development [26], the number of fully di↵erential calculations

is limited, and an automated implementation is not foreseeable in the near future.

On the other hand, we know that jet radiation is enhanced by traceable logarithms.

This makes improved predictions for QCD observables based on resummation possible.

The general strategy is to redefine the perturbative series from powers of ↵s to including

the relevant logarithms; the simplified structure of these enhanced terms then allows for

a resummation to all orders. Once the resummed form is known we can match onto a

fixed order calculation and avoid double-counting. For Sudakov-type logarithms a general

method for this type of resummation is available [27], and for particular event shape ob-

servables an automated approach exists [28]. In LHC analyses, the resummation of finite

logarithms in the presence of a jet-veto scale is of interest [17, 29].

A numerical approach to resummation is provided by parton-shower simulations [30].

It is automated in the multi-purpose Monte Carlo generators Pythia [31], Herwig [32] and

Sherpa [33] to leading order in the strong coupling combined with the resummation of lead-

ing collinear logarithms (LO/LL). This method di↵ers from the previous approaches in that

the full spectrum of final state partons or hadrons is produced explicitly. While the parton

shower is well defined for relatively small transverse momenta of the jets it is not applicable

for hard jet radiation. However, this limitation is overcome by the CKKW [11], MLM [12],

and CKKW-L [34] jet-merging algorithms, that incorporate the tree-level matrix-element

corrections for the first few hardest emissions [30, 35].

A complementary strategy is provided by the MC@NLO [36] and POWHEG [37] ap-

proaches, that realize the matching of NLO calculations with parton showers. While these

methods guarantee NLO/LL accuracy only the first/hardest shower emission gets corrected

by the real-emission matrix element. Higher jet multiplicities are described in the parton-

shower approximation only. First attempts to combine the NLO/LL approaches with the

tree-level merging ansatz have been reported recently [38]. An unprecedented level of so-

phistication for predicting multi-jet final states is achieved by the promotion of merging

algorithms to next-to-leading order accuracy [39].

Even though we can nowadays simulate multi-jet events, a detailed understanding of

inclusive or exclusive n

jets

distributions at the LHC is still missing. Its universal features

have been studied since 1985 [7]. Scaling patterns can be conveniently displayed in the

ratio of successive exclusive jet cross-sections

R

(n+1)/n =
�n+1

�n
=

Pn+1

Pn
with Pn =

�n

�

tot

. (1.1)

n

trans

⇡ n̄ (1.2)

We define the jet multiplicity n as the number of jets in addition to the hard process,

e.g. �
1

for pure QCD di-jets is experimentally a 3-jet final state. Jets which are part of the
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for hard jet radiation. However, this limitation is overcome by the CKKW [11], MLM [12],
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corrections for the first few hardest emissions [30, 35].

A complementary strategy is provided by the MC@NLO [36] and POWHEG [37] ap-

proaches, that realize the matching of NLO calculations with parton showers. While these

methods guarantee NLO/LL accuracy only the first/hardest shower emission gets corrected

by the real-emission matrix element. Higher jet multiplicities are described in the parton-

shower approximation only. First attempts to combine the NLO/LL approaches with the

tree-level merging ansatz have been reported recently [38]. An unprecedented level of so-

phistication for predicting multi-jet final states is achieved by the promotion of merging

algorithms to next-to-leading order accuracy [39].

Even though we can nowadays simulate multi-jet events, a detailed understanding of
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SUMMARY: RATES AND GEN. FUNCTIONAL

• From the 2-jet rate (2 gluon emission) able to see how the (Poisson-making) primary 

comments are dynamically enhanced with respect to the secondaries.  

• Fixed order calculation tells us that Poisson distribution altered by secondary emissions.

• At high multiplicity start to see the on-set of geometric scaling.

Fixed-order

Resummed jet rates

Generating Functional
• Able to derive the desired patterns in two opposing limits, in the case of the staircase 

limit only able to solve the PDE analytically for pure YM.

However, the Durham algorithm is somewhat special, in that there is no 

resolution scale in physical energy or angle.  Therefore, we would like to study 

an algorithm which mimics LHC relevant jet.  i.e Generalized kt algorithm.

Monday, December 3, 12



GENERALIZED KT  ALGORITHM

Generating functional
• For the Generalized class of algorithms (more analogous to LHC algorithms of choice) [EG et al.]

The solution for the quark generating function is

�
q

(u,E, ⇠) = u exp

⇢
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�
. (3.4)

We can solve for the gluon generating function by iteration, and then substitute

in this equation to get the complete solution. The generating function for e

+

e

�

annihilation at c.m. energy Q is that for two quarks of energy Q/2, each filling one

hemisphere:

�
ee

= [�
q

(u,Q/2, 1)]2 (3.5)

4 . L e a d i n g d o u b l e l o g a r i t h m s

In the DLA we keep only the singular parts of P
gq
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and can drop P

qg

. For

brevity we define the logs as
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2. Sudakov factors

The evolution scale for coherent parton showering is ⇠ ⌘ 1�cos ✓ where ✓ the emission

angle. To be resolved, an emission must have ⇠ > ⇠

R

and E > E

R

. The probability

for a single resolvable gluon emission from a quark of energy E at scale ⇠ is thus
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while that for a single resolvable quark or antiquark emission is
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Note that all this is independent of the value of p.

3. Generating functions

By definition the probability of resolving n jets from a quark or gluon of energy E

at scale ⇠ is [6–8]
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1. The inclusive generalized kt jet algorithms

We define the algorithms as described in the FastJet user manual [1], Sect. 4.5. This

is for e+e� annihilation but, apart from PDF e↵ects, the leading logs should be the

same. By “leading logs” we always mean leading double and next-to-double logs,

↵

n

S

log2n and ↵

n

S

log2n�1. The distance measures are

d
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with p = 1, 0,�1 for the k

t

[2], Cambridge/Aachen [3, 4] and anti-k
t

[5] algorithms,

respectively. At any stage of clustering, if a d

ij

is the smallest measure we combine i

and j. If d
iB

is the smallest we call i a jet candidate and remove it from the clustering

list. We then call jet candidates with energy E

i

> E

R

resolved jets.

– 1 –

• Generating functional solved via iteration for the rates, can be compared with Parton 

shower. 
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Scaling as a function of the jet area
• With the Durham measure, smaller average jets (i.e smaller ycut) raised the size of the 

size of the overall logarithms, and increases the goodness of the Poisson fit.

• However, with the generalized algorithm, overall logarithm again increases, although the  

goodness of the Poisson fit is significantly worse.

Angular dependence of the emission types
•The resummed jet rates (and gen func.) contain no phase space dependence of the two 

emission types (primary vs secondary), but the parton shower does (through kinematics).
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CONCLUSIONS ON e+e- SCALING

19

We expect the following for the distribution of jet rates in e+e-

Small emission probability (small log):  
1.  Staircase tail, not a good Poisson at low multiplicity.

Large emission probability (large log):  
1.  Increasingly good Poisson fit at multiplicities up to <N>.
2.  Staircase tail sets in after <N>.
3.  Strong deviation from 1. for small jet sizes (in Gen. kT).
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PDF EFFECTS ON SCALING

Factorization at leading logarithmic level
• Generating functional for initial state evolution [Catani, Webber, Dokshitzer (1993)].

• Factorization of the Generating functional at the leading logarithmic level.

parton cannot produce a final state jet, so we always find the normalization condition

�a(p2V , p
2

V ) ⌘ 1. The further evolution of emitted partons we describe with the time-like

functional of Eq. (2.9).

Moving on to Drell-Yan production with two incoming partons we need to replace the

generating functionals, symbolically written, to

Zq/q̄(xa, Q
2

, p

2

V )⇥ Zq̄/q(xb, Q
2

, p

2

V ) . (3.6)

Thus, we replace the remaining time-like generating functional with a space-like generating

functional to describe two incoming partons. A major complication is that the final state

phase space does not fix xa,b anymore. Instead, we have to integrate over their allowed

ranges and find the generating functional for the Drell-Yan process,

�
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From this generating functional we can derive the individual n-jet rates. For the second

line of Eq. (3.7) we use the leading logarithmic approximation as in the DIS case. To

arrive at the third line we replace the variable xa,b values by a typical partonic energy scale

x

(0). For typical hadron colliders processes we assume this value to be close to threshold

and equal for the two incoming partons. The argument u which generates the di↵erent

n-jet rates is carried only by the generating functionals �a,b(Q2

, p

2

V ). Starting with two

generating functionals for the two initial state particles, hard jet radiation with pT > pV

indeed factorizes from a PDF factor.

One apparent contradiction related to the PDF kinematics we need to resolve. On

the one hand, in Eq. (3.4) the eikonal approximation allows us to set z ⇡ 1, which means

that the entire energy dependence is encoded in the PDF factor. On the other hand, each

resolved jet requires a finite pT > pV . Hence, the integration range for xa,b is determined

by the partonic n-jet process and x

(0) implicitly depends on u. This implicit dependence

we have to account for by hand. In particular for parton density regimes which increase

towards small x the majority of multi-jet events at the LHC are produced at threshold.

The threshold value for any of the n-jet production rates we denote as x(n), leading us to

the modified factorized form

�
Drell-Yan

=
X

a,b

fa(x
(n)
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, p

2

V ) fb(x
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V ) . (3.8)

We emphasize that n is determined a posteriori upon di↵erentiation with respect to u, so

is presented for illustrative purposes only. Eq. (3.8) means that to leading logarithm the
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• Factorization scale               avoids possible large logs or double counting.
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Figure 5. Normalized ratios for the photon multiplicity in e

+
e

� ! e

+
e

� +n� as a function of the
resolution parameter ycut. The solid lines correspond to the perfect Poisson hypothesis. We use
Sherpa [33].

radiation, and we know that the initial-state parton shower behaves somewhat di↵erently

from final state splittings.

3.1 Generating functional for incoming hadrons

The basis of the QCD treatment of hadron collider physics is collinear factorization which

allows us to employ the generating functional method [9, 10, 14]. Before we can apply

any of this to jet counting we need to clarify our choice of the factorization scale µF

in exclusive n

jet

rates, i.e. in the presence of a jet-counting or jet-veto scale pV . The

resummation properties of the DGLAP equation identify the combined renormalization and

factorization scale with a collinear cuto↵ below which initial state splittings are unresolved

and influence only the functional dependence on the partonic energy fraction x. Because we

are interested in radiated jets with pT � pV we identify the factorization and the jet-veto

scale, i.e. µF ⌘ pV . Note that this choice furthermore avoids generating additional finite

though potentially large logarithms in the ratio µF /pV [17].

Symbolically, going from final state radiation in e

+

e

� collisions to deep inelastic scat-

tering (DIS) with initial state radiation and parton densities we replace the two generating

functionals, distinguishing time-like from space-like splittings,

�q(Q
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2

V )⇥ �q̄(Q
2

, p

2

V ) ! �q/q̄(Q
2

, p

2

V )⇥ Zq/q̄(x,Q
2

, p

2

V ). (3.1)

As in Sec. 2.2 we omit the argument u in all generating functionals. In the original DIS

context all scales are defined in terms of the e

+

e

� Durham algorithm [14], most notably

the hard scale Q and pV ⌘ µF as well as the softer resolution scale Q

0

 µF . We identify

all three relevant scales Q

0

= µF = pV . For the DIS analysis this corresponds to not
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Estimating the PDF suppression

jet radia t ion pa t tern in t he D rell- Yan case is t he same as in e + e � ! jets processes, modu lo
e xplici t P DF f actors est imated u sing an n -dependent t hreshold k inema t ics. A similar
approach can accou nt f or energ y momentu m conserv at ion in sof t-g lu on resu mmat ion [5 2 ].
T his w ay w e leav e t he L L ev olu t ion of jets u ntou ched and instead shif t t he x v alu e in t he
P DF s to accou nt f or addi t ional jets. A ll ou r fi nding s f rom S ec. 2 w e can immediately apply ,
once w e u nderst and t he P DF correct ion f actor in t he ne xt sect ion.

3.2 Parton density suppression

I n S ec. 3 . 1 w e hav e learned t ha t to leading log ari t hmic accu racy t he e↵ects of t he par ton
densi t ies and jet emission f actoriz e. F or larg e jet mu l t iplici t ies t his e xplains t he ob serv ed
st aircase scaling at hadron colliders [7 , 4 1 ]. P ar ton densi t ies cont rib u te to t his e↵ect in
par t icu lar a t low mu l t iplici t ies. W hen increasing t he jet mu l t iplici ty t he ty pical par tonic
energ y f ract ions x prob ed b y t he par tonic process increase as w ell. T he rela t iv e increase
in x is larg est f or low jet mu l t iplici t ies.

I n terms of t he assu med t hreshold k inema t ics adding a jet w i t h fi ni te t ransv erse mo-
mentu m implies x ( n+ 1) > x ( n) . T o compu te t he relat iv e cost of produ cing an addi t ional
jet w e est imate t he ra t io of P DF v alu es ev alu a ted a t x ( n) and x ( n+ 1) as a f u nct ion of t he
nu mb er of e xt ra jets n . I n e↵ect t his is t he discret iz ed second deriv a t iv e w i t h respect to
x . F or hadron collider processes inv olv ing tw o par ton densi t ies f ( x , Q ) w e defi ne t he P DF
correct ion f actor to t he ra t io of su ccessiv e jet rat ios R ( n+ 1) /n/ R ( n+ 2 ) /( n+ 1)

B n =

���������

f ( x ( n+ 1) , p V )
f ( x ( n) , p V )

f ( x ( n+ 2 ) , p V )
f ( x ( n+ 1) , p V )

���������

2

. ( 3 . 9 )

T he sq u are in t he defi ni t ion of B n refl ects t he tw o P DF s in hadron collisions. I f f or e xample
t he par tonic rat io of tw o su ccessiv e jet ra t ios is R ( n+ 1) /n/ R ( n+ 2 ) /( n+ 1) ⇠ c t hen t he proper
hadronic ra t io b ecomes B nc . W e fi xQ f or simplici ty , b u t t his only mildly a↵ects ou r resu l ts.

T he main e↵ects are, fi rst , t ha t B n < 1 in most cases. T his w ay P DF e↵ects su ppress
t he low er mu l t iplici ty ra t ios R ( n+ 1) /n. F or larg e jet mu l t iplici t ies t he rela t iv e impact of
y et anot her jet b ecomes small, B n ! 1 . T he hadronic ini t ial-st a te e↵ect on t he jet scaling
disappears and w e are b ack to t he st aircase pa t tern. S econd, t he P DF e↵ect is larg est
f or t he steep g lu on densi t ies, as compared to t he fl a t ter v alence q u ark s. F inally , allow ing
f or v ariab le Q t he P DF v alu es f ( x , Q ) increase ( decrease) w i t h Q f or low ( hig h) x , w i t h
a cross-ov er point arou nd x ⇠ 0 . 1 . F or small x v alu es t he init ial st a te ev olu t ion t hen
su ppresses jet rat ios at hig h mu l t iplici ty or larg e Q 2 .

W ha t w e are most interested in are P DF e↵ects f or t he D rell- Yan process a t low er
mu l t iplici t ies. W e consider t he t hreshold v alu es x ( n) , f or e xample f or produ cing an on-shell
Z -b oson and one addi t ional jet ,

x ( 1) =

r
m 2

Z + 2 ( p T

q
p 2
T + m 2

Z + p 2
T )

2 E b e a m
. ( 3 . 1 0 )
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• Assume threshold kinematics on additional jet.

• Effect on scaling essentially discretized second 
derivative with respect to x.

jet radiation pattern in the Drell-Yan case is the same as in e

+

e

� ! jets processes, modulo

explicit PDF factors estimated using an n-dependent threshold kinematics. A similar

approach can account for energy momentum conservation in soft-gluon resummation [52].

This way we leave the LL evolution of jets untouched and instead shift the x value in the

PDFs to account for additional jets. All our findings from Sec. 2 we can immediately apply,

once we understand the PDF correction factor in the next section.

3.2 Parton density suppression

In Sec. 3.1 we have learned that to leading logarithmic accuracy the e↵ects of the parton

densities and jet emission factorize. For large jet multiplicities this explains the observed

staircase scaling at hadron colliders [7, 41]. Parton densities contribute to this e↵ect in

particular at low multiplicities. When increasing the jet multiplicity the typical partonic

energy fractions x probed by the partonic process increase as well. The relative increase

in x is largest for low jet multiplicities.

In terms of the assumed threshold kinematics adding a jet with finite transverse mo-

mentum implies x

(n+1)

> x

(n). To compute the relative cost of producing an additional

jet we estimate the ratio of PDF values evaluated at x

(n) and x

(n+1) as a function of the

number of extra jets n. In e↵ect this is the discretized second derivative with respect to

x. For hadron collider processes involving two parton densities f(x,Q) we define the PDF

correction factor to the ratio of successive jet ratios R
(n+1)/n/R(n+2)/(n+1)

Bn =

���������

f(x(n+1)

, pV )

f(x(n), pV )

f(x(n+2)

, pV )

f(x(n+1)

, pV )

���������

2

. (3.9)

R

(n+1)/n ⇠
�����
f(x(n+1)

, pV )

f(x(n), pV )

�����

2

. (3.10)

The square in the definition of Bn reflects the two PDFs in hadron collisions. If for example

the partonic ratio of two successive jet ratios is R
(n+1)/n/R(n+2)/(n+1)

⇠ c then the proper

hadronic ratio becomes Bnc. We fix Q for simplicity, but this only mildly a↵ects our results.

The main e↵ects are, first, that Bn < 1 in most cases. This way PDF e↵ects suppress

the lower multiplicity ratios R

(n+1)/n. For large jet multiplicities the relative impact of

yet another jet becomes small, Bn ! 1. The hadronic initial-state e↵ect on the jet scaling

disappears and we are back to the staircase pattern. Second, the PDF e↵ect is largest

for the steep gluon densities, as compared to the flatter valence quarks. Finally, allowing

for variable Q the PDF values f(x,Q) increase (decrease) with Q for low (high) x, with

a cross-over point around x ⇠ 0.1. For small x values the initial state evolution then

suppresses jet ratios at high multiplicity or large Q

2.

What we are most interested in are PDF e↵ects for the Drell-Yan process at lower

multiplicities. We consider the threshold values x(n), for example for producing an on-shell
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Estimating the threshold kinematics
• Most naive estimate not sufficient for good agreement with the data.
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Figure 6. Left panel: estimated PDF suppression for inclusive (solid) and jet-associated (dashed,
p

lead
T � 100 GeV) Drell-Yan kinematics. We assume an initial state with d-quarks only. Right panel:

same for Higgs production in gluon fusion with mH = 125 GeV. The uncertainty encompasses two
representative kinematical limits of the multi-jet final state, described in the text.

where E

beam

= 3500 GeV for the LHC in 2011. Comparing x

(1) with x

(0) ⇡ mZ /(2E
beam

)

shows a sizeable shift. For the two-jet threshold x

(2) two limiting cases are either the addi-

tional jet adding merely p T /(2E
beam

) to x

(1) or two approximately collinear jets recoiling

against a hard Z. The variation between these two cases estimates the uncertainty on our

method which can be generalized straightforwardly to the n-jet final state.

In the left panel of Fig. 6 we display B n for the estimated Drell-Yan kinematics,

assuming each jet has transverse momentum p T = p V = 30 GeV. The e ↵ ect on the first jet

ratios is large, but quickly diminishes towards higher n. We also see that if we require a

leading jet with large transverse momentum, pleadT � 100 GeV, we move to su�ciently high

x such that additional jet ratios are una ↵ ected by the PDF e ↵ ect. It is reassuring to see

that if we combine the PDF suppression of R
1 / 0 (0.46 - 0.65) with the C A enhancement of

R

2 / 1 (1.36) and assume an original Poisson scaling we find R

1 / 0/R2 / 1 = (0.67 � 0.95), in

nice agreement with ATLAS data [50]. This beautifully illustrates that staircase scaling at

large multiplicities can be derived from first principles QCD while for small multiplicities

it is something like a sweet spot.

As an additional check, we present the PDF suppression in gluon-fusion Higgs produc-

tion in the right panel of Fig. 6. We assume mH = 125 GeV, ignore flavor changes and

consider jets with p T = p V = 30 GeV. The gluon PDF drops more rapidly for increasing

x, inducing a large PDF suppression. On the other hand, the increasing energy of the core

process as compared to the Drell-Yan process slightly decreases the e ↵ ect. The combination

of the two gives remarkably similar results to the Drell-Yan process.
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Estimating the PDF suppression

jet radia t ion pa t tern in t he D rell- Yan case is t he same as in e + e � ! jets processes, modu lo
e xplici t P DF f actors est imated u sing an n -dependent t hreshold k inema t ics. A similar
approach can accou nt f or energ y momentu m conserv at ion in sof t-g lu on resu mmat ion [5 2 ].
T his w ay w e leav e t he L L ev olu t ion of jets u ntou ched and instead shif t t he x v alu e in t he
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st aircase scaling at hadron colliders [7 , 4 1 ]. P ar ton densi t ies cont rib u te to t his e↵ect in
par t icu lar at low mu l t iplici t ies. W hen increasing t he jet mu l t iplici ty t he ty pical par tonic
energ y f ract ions x prob ed b y t he par tonic process increase as w ell. T he rela t iv e increase
in x is larg est f or low jet mu l t iplici t ies.

I n terms of t he assu med t hreshold k inema t ics adding a jet w i t h fi ni te t ransv erse mo-
mentu m implies x ( n+ 1) > x ( n) . T o compu te t he relat iv e cost of produ cing an addi t ional
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nu mb er of e xt ra jets n . I n e↵ect t his is t he discret iz ed second deriv a t iv e w i t h respect to
x . F or hadron collider processes inv olv ing tw o par ton densi t ies f ( x , Q ) w e defi ne t he P DF
correct ion f actor to t he ra t io of su ccessiv e jet rat ios R ( n+ 1) /n/ R ( n+ 2 ) /( n+ 1)
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f ( x ( n+ 1) , p V )
f ( x ( n) , p V )
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���������

2
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T he sq u are in t he defi ni t ion of B n refl ects t he tw o P DF s in hadron collisions. I f f or e xample
t he par tonic rat io of tw o su ccessiv e jet ra t ios is R ( n+ 1) /n/ R ( n+ 2 ) /( n+ 1) ⇠ c t hen t he proper
hadronic ra t io b ecomes B nc . W e fi xQ f or simplici ty , b u t t his only mildly a↵ects ou r resu l ts.

T he main e↵ects are, fi rst , t ha t B n < 1 in most cases. T his w ay P DF e↵ects su ppress
t he low er mu l t iplici ty rat ios R ( n+ 1) /n. F or larg e jet mu l t iplici t ies t he rela t iv e impact of
y et anot her jet b ecomes small, B n ! 1 . T he hadronic ini t ial-st a te e↵ect on t he jet scaling
disappears and w e are b ack to t he st aircase pa t tern. S econd, t he P DF e↵ect is larg est
f or t he steep g lu on densi t ies, as compared to t he fl a t ter v alence q u ark s. F inally , allow ing
f or v ariab le Q t he P DF v alu es f ( x , Q ) increase ( decrease) w i t h Q f or low ( hig h) x , w i t h
a cross-ov er point arou nd x ⇠ 0 . 1 . F or small x v alu es t he init ial st a te ev olu t ion t hen
su ppresses jet rat ios at hig h mu l t iplici ty or larg e Q 2 .

W ha t w e are most interested in are P DF e↵ects f or t he D rell- Yan process a t low er
mu l t iplici t ies. W e consider t he t hreshold v alu es x ( n) , f or e xample f or produ cing an on-shell
Z -b oson and one addi t ional jet ,

x ( 1) =

r
m 2

Z + 2 ( p T

q
p 2
T + m 2

Z + p 2
T )

2 E b e a m
. ( 3 . 1 0 )
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• Assume threshold kinematics on additional jet.

• Ambiguity starting at the kinematics of the 
second jet (recoil against the Z-boson or not)

• Slightly more sophisticated choice is to include the recoil of the boson from x(0)           x(1)  

n
1 2 3 4 5 6 7

nB

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Drell-Yan kinematics

 all jets recoil←

T
 balanced in p←

d quark initial state
 100 GeV≥ lead

T
p

n
1 2 3 4 5 6 7

nB

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Higgs kinematics

 all jets recoil←

T
 balanced in p←

gluon initial state
 100 GeV≥ lead

T
p

Figure 6. Left panel: estimated PDF suppression for inclusive (solid) and jet-associated (dashed,
p

lead
T � 100 GeV) Drell-Yan kinematics. We assume an initial state with d-quarks only. Right panel:

same for Higgs production in gluon fusion with mH = 125 GeV. The uncertainty encompasses two
representative kinematical limits of the multi-jet final state, described in the text.

Z-boson and one additional jet,

x

(1) =

r
m

2
Z + 2 (pV

q
p

2
V +m

2
Z + p

2
V )

2Eb ea m
. (3.11)

x

(0 ) ⇡ mZ

2Eb ea m
(3.12)

where Eb ea m = 3500 GeV for the LHC in 2011. Comparing x(1) with x

(0 ) ⇡ mZ /(2Eb ea m )

shows a sizeable shift. For the two-jet threshold x

(2 ) two limiting cases are either the addi-

tional jet adding merely pT /(2Eb ea m ) to x

(1) or two approximately collinear jets recoiling

against a hard Z. The variation between these two cases estimates the uncertainty on our

method which can be generalized straightforwardly to the n-jet final state.

In the left panel of Fig. 6 we display Bn for the estimated Drell-Yan kinematics,

assuming each jet has transverse momentum pT = pV = 30 GeV. The e↵ect on the first jet

ratios is large, but quickly diminishes towards higher n. We also see that if we require a

leading jet with large transverse momentum, pl ea d
T � 100 GeV, we move to su � ciently high

x such that additional jet ratios are una↵ected by the PDF e↵ect. It is reassuring to see

that if we combine the PDF suppression of R1 / 0 (0.46 - 0.65) with the CA enhancement of

R2 / 1 (1.36) and assume an original Poisson scaling we find R1 / 0 /R2 / 1 = (0.67 � 0.95), in

nice agreement with ATLAS data [50]. This beautifully illustrates that staircase scaling at

large multiplicities can be derived from first principles QCD while for small multiplicities

it is something like a sweet spot.

As an additional check, we present the PDF suppression in gluon-fusion Higgs produc-

tion in the right panel of Fig. 6. We assume mH = 125 GeV, ignore flavor changes and
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Figure 6. Left panel: estimated PDF suppression for inclusive (solid) and jet-associated (dashed,
p lead
T � 100 GeV) Drell-Yan kinematics. We assume an initial state with d -quarks only. Right panel:

same for Higgs production in gluon fusion with m H = 125 GeV. The uncertainty encompasses two
representative kinematical limits of the multi-jet final state, described in the text.

Z -boson and one additional jet,

x (1) =

r
m 2

Z + 2 (p V

q
p 2

V + m 2

Z + p 2

V )

2 E
beam

. (3.11)

x (0) ⇡ m Z

2E
beam

(3.12)

where E
beam

= 3500 GeV for the LHC in 2011. Comparing x (1) with x (0) ⇡ m Z /(2E
beam

)

shows a sizeable shift. For the two-jet threshold x (2) two limiting cases are either the addi-

tional jet adding merely p T /(2E
beam

) to x (1) or two approximately collinear jets recoiling

against a hard Z . The variation between these two cases estimates the uncertainty on our

method which can be generalized straightforwardly to the n -jet final state.
In the left panel of Fig. 6 we display Bn for the estimated Drell-Yan kinematics,

assuming each jet has transverse momentum p T = p V = 30 GeV. The e↵ect on the first jet

ratios is large, but quickly diminishes towards higher n . We also see that if we require a

leading jet with large transverse momentum, p lead

T � 100 GeV, we move to su�ciently high

x such that additional jet ratios are una↵ected by the PDF e↵ect. It is reassuring to see

that if we combine the PDF suppression of R
1/0 (0.46 - 0.65) with the CA enhancement of

R
2/1 (1.36) and assume an original Poisson scaling we find R

1/0 / R
2/1 = (0.67 � 0.95), in

nice agreement with ATLAS data [50]. This beautifully illustrates that staircase scaling at

large multiplicities can be derived from first principles QCD while for small multiplicities

it is something like a sweet spot.

As an additional check, we present the PDF suppression in gluon-fusion Higgs produc-

tion in the right panel of Fig. 6. We assume m H = 125 GeV, ignore flavor changes and
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• Almost identical effect for ggH (gluons vs mhiggs)

• Key result: PDFs push down the lower 
multiplicity jet ratios       more staircase-like.  
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In kinematic limit Emission pattern behaves as Scaling pattern

Poisson

Geometric

OTHER EFFECTS IN PP

Scaling from the backward evolution form-factor

• Generating functional in the small x regime in the Multi-Regge-Kinematics limit [Webber 1998]

Scaling in the context of BFKL dynamics
3.4 BFKL evolution

So far, we only consider the DGLAP evolution which relies on collinear factorization and

resums collinear logarithms. Parton evolution can also be represented by BFKL [55] or

CCFM [56] dynamics which rely on an entirely di↵erent form of the factorized matrix

element. In this approach a simple expression for the n-jet generating function at leading

logarithmic order in log 1/x and logQ/pV reads [57]

�(Q2

, p

2

V )BFKL

= exp

✓
�2CA↵s

⇡w

log
Q

pV

◆
1 + (1� u)

2CA↵s

⇡w

log
Q

pV

�u/(1�u)

. (3.15)

In this expression w is the Mellin conjugate variable of x which for the physical jet rates

requires convolution with the structure functions and transformation back to x space. In

analogy to Eq. (2.9), functional derivatives of �
BFKL

evaluated at u = 0 return exclusive

jet rates.

As in the DGLAP case of Sec. 2.1 we can compute the scaling patterns in the limit of

small and large emission probability.

(1)
2CA↵s

⇡w

log
Q

pV
� 1

Following Eq. (3.15) this large logarithm describes the limit of large emission proba-

bilities. Again, we find that the n

jets

distribution shows a Poisson scaling

1

n!

@

n

@u

n


1 + (1� u)

2CA↵s

⇡w

log
Q

pV

�u/(1�u)
�����
u=0

⇡ 1

n!
logn

✓
1 +

2CA↵s

⇡w

log
Q

pV

◆
.

(3.16)

Note that this result is obtained by taking the limit after the di↵erentiation. Although

Eq. (3.16) is formally true in the limit 1/w logQ/pV ! 1 the enhancement of the

Poisson term is gradual, i.e. logn(1/w logQ/pV ). At every multiplicity there appear

terms of the order logn�1(1/w logQ/pV ) with possibly large coe�cients. Therefore,

we expect this Poisson distribution to only emerge at very high energies and currently

experimentally inaccessible x values.

(2)
2CA↵s

⇡w

log
Q

pV
⌧ 1

Expanding to leading order in the emission probability the rates are

Pn ⇡
✓
2CA↵s

⇡w

log
Q

pV

◆n

. (3.17)

This is a staircase distribution in the jet ratios. This result can also be seen in the

corresponding fixed order computation [58]. Apparently, this staircase distribution is

of an entirely di↵erent origin from the gluonic cascade in DGLAP, Eq. (2.20). In the

BFKL evolution there is no notion of subsequent emissions, all gluons are emitted

directly from the factorized t-channel. A subsequent emission does not contain the
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leading jet with large transverse momentum, pleadT � 100 GeV, we move to su�ciently high

x such that additional jet ratios are una↵ected by the PDF e↵ect. It is reassuring to see

that if we combine the PDF suppression of R
1/0 (0.46 - 0.65) with the CA enhancement of

R

2/1 (1.36) and assume an original Poisson scaling we find R

1/0/R2/1 = (0.67 � 0.95), in

nice agreement with ATLAS data [50]. This beautifully illustrates that staircase scaling at

large multiplicities can be derived from first principles QCD while for small multiplicities

it is something like a sweet spot.

As an additional check, we present the PDF suppression in gluon-fusion Higgs produc-

tion in the right panel of Fig. 6. We assume mH = 125 GeV, ignore flavor changes and

consider jets with pT = pV = 30 GeV. The gluon PDF drops more rapidly for increasing

x, inducing a large PDF suppression. On the other hand, the increasing energy of the core

process as compared to the Drell-Yan process slightly decreases the e↵ect. The combination

of the two gives remarkably similar results to the Drell-Yan process.

3.3 Initial-state parton shower

As indicated above, jet radiation at hadron colliders is generated mostly through initial

state radiation, which means that our final-state analysis of Sec. 2 should be modified. We

need to compute the spectrum of jets arising as primary emission in the backward evolution

and acting as seeds for subsequent final-state radiation. For simplicity we just consider the

backward evolution along an initial-state quark line with a single type of branching, namely

gluon emission. The evolution proceeds through the space-like Sudakov form factor

⇧(t
1

, t

2

;x) = exp

⇢
�
Z t2

t1

dt

t

Z
dz

z

↵s

2⇡
Pq!qg(z)

fq(x/z, t)

fq(x, t)

�
, (3.13)

cf. Ref. [53], with the appropriate splitting kernels for gluon emission Pq!qg and ignoring

potential initial-state flavor changes here. The evolution of each initial state parton starts

with momentum fraction xi, determined by the hard process, and virtuality t = x

1

x

2

S,

it terminates at the hadronic scales x ⇡ 1 and t = Q

2

0

associated with the transition to

non-perturbative physics.

We know from Sec. 2 that a single time-like Sudakov form factor produces perfect

Poisson scaling. Indeed, whenever we have a non-emission probability represented by e

��

as in Eq. (2.3), where � does not change as a result of a splitting, the process is guaranteed

to produce Poisson scaling. For backwards evolution the situation, however, is di↵erent.

Once a splitting is generated, e.g. using a veto algorithm [54], we need to re-compute

x ! x/z because each emitted parton increases the combined x value. The evolution then

proceeds with this di↵erent e↵ective splitting kernel. In other words, the PDF dependence

in Eq. (3.13) explicitly correlates parton emissions, breaking a key ingredient to the Poisson

derivation.

To quantify this e↵ect we numerically evaluate the gluon emission spectrum generated

by the Sudakov form factor given in Eq. (3.13) using a veto algorithm. We neglect any

recoil e↵ects and therefore expect a somewhat smaller suppression in the first bin. In Fig. 7

we display the normalized ratios of the gluon production rates o↵ initial state d-quarks.
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Figure 7. Normalized ratios of gluon production rates originating from the backward evolution
of d-quarks according to Eq. (3.13). We assume di↵erent initial values for x

(0). Each splitting is
restricted to z values generating a minimal increase of �x = 0.02. The dashed line indicates the
expectation for a perfect Poisson distribution of the underlying jet rates.

We assume di↵erent starting values for x(0) thereby keeping the evolution distance and the

minimum step size of �x = 0.02 fixed. This roughly corresponds to the emission of a hard

additional jet with pT ⇡ 70 GeV which we are interested in for the LHC. The starting scale

we vary between x

(0) = 0.03 and x

(0) = 0.2 corresponding to a hard process of 105 GeV

and 700 GeV respectively. The jet ratios strongly deviate from the Poisson pattern for low

x

(0), while the e↵ect quickly diminishes for large x

(0). This is the same pattern we find for

the PDF e↵ect in Sec. 3.2.

Finally, to see how our two approaches to parton density e↵ects are related we study

the PDF part of the weight attached to a single resolvable emission coming from a collision

with momentum fraction x

0

. Using the backward evolution Eq. (3.13) the exclusive one-jet

rate can be represented as

�

1

⇠ f

1

(x(0), Q2) f
2

(x(0), Q2) �partonic

0

Z
dt

t

Z
dz

z

P (z)
f(x(0)/z, t)

f(x(0), t)

⇠ f

1

(x(0), Q2) f
2

(x(0), Q2) �partonic

0

f(x(1), Q2)

f(x(0), Q2)

P (z(1))

z

(1)

. (3.14)

In the second line we limit ourselves to the leading logarithmic approximation (i.e. ignoring

the t dependence of the PDFs) and fix the resolvable momentum fraction to its threshold

value z

(1) = x

(0)

/x

(1). The e↵ect of the PDF weight in the ratio �

1

/�

0

then turns into a

suppression factor f(x(1), Q2)/f(x(0), Q2). Each emission just pushes up the overall PDF

suppression and we are e↵ectively led to the estimate on the shape of the ratios provided

by Eq. (3.9).
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3.4 BFKL evolution

So far, we only consider the DGLAP evolution which relies on collinear factorization and

resums collinear logarithms. Parton evolution can also be represented by BFKL [55] or

CCFM [56] dynamics which rely on an entirely di↵erent form of the factorized matrix

element. In this approach a simple expression for the n-jet generating function at leading

logarithmic order in log 1/x and logQ/pV reads [57]

�(Q2

, p

2

V )BFKL

= exp

✓
�2CA↵s

⇡w

log
Q

pV

◆
1 + (1� u)

2CA↵s

⇡w

log
Q

pV

�u/(1�u)

. (3.15)

In this expression w is the Mellin conjugate variable of x which for the physical jet rates

requires convolution with the structure functions and transformation back to x space. In

analogy to Eq. (2.9), functional derivatives of �
BFKL

evaluated at u = 0 return exclusive

jet rates.

As in the DGLAP case of Sec. 2.1 we can compute the scaling patterns in the limit of

small and large emission probability.

(1)
2CA↵s

⇡w

log
Q

pV
� 1

Following Eq. (3.15) this large logarithm describes the limit of large emission proba-

bilities. Again, we find that the n

jets

distribution shows a Poisson scaling

1

n!

@

n

@u

n


1 + (1� u)
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log
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�u/(1�u)
�����
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n!
logn
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log
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◆
.

(3.16)

�n ⇡ 1

n!
logn

✓
1 +

2CA↵s

⇡w

log
Q

pV

◆
. (3.17)

Note that this result is obtained by taking the limit after the di↵erentiation. Although

Eq. (3.17) is formally true in the limit 1/w logQ/pV ! 1 the enhancement of the

Poisson term is gradual, i.e. logn(1/w logQ/pV ). At every multiplicity there appear

terms of the order logn�1(1/w logQ/pV ) with possibly large coe�cients. Therefore,

we expect this Poisson distribution to only emerge at very high energies and currently

experimentally inaccessible x values.

(2)
2CA↵s

⇡w

log
Q

pV
⌧ 1

Expanding to leading order in the emission probability the rates are

Pn ⇡
✓
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log
Q

pV

◆n

. (3.18)

�n ⇡
✓
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log
Q

pV

◆n

. (3.19)
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(2)
↵s

⇡

log2
Q

Q

0

⌧ 1

Taking this limit of Eq. (2.4) and Eq. (2.5), we find

�

primary(Q2

, Q

2

0

) = c

primary

↵

2

s

4(2⇡)2
log4

Q

Q

0

+ O
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s log
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◆
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primary

c

secondary

�

secondary(Q2

, Q

2

0

) . (2.7)

The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.

For a known series of functions Pn we define

� =
1X

n=0

u

n
Pn�1

with fn�1

=
1

n!

d

n

du

n
�

����
u=0

. (2.8)

Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.

The quark and gluon generating functionals to next-to-leading logarithmic accuracy

are

�q(Q
2) = u exp

"Z Q2

Q2
0

dt �q(Q
2

, t) (�g(t)� 1)

#

�g(Q
2) = u exp

"Z Q2

Q2
0

dt

 
�g(Q

2

, t) (�g(t)� 1) + �f (t)

 
�2

q(t)

�g(t)
� 1

!!#
. (2.9)
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where again we have 

• Forward evolution Sudakov always gives Poisson along a single line.  For backward evolution 
depends on starting value for x.
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CONCLUSIONS ON SCALING AT PP

• Final state radiation effects from e+e- carry-over and give Poisson in large-log limit with 
staircase tail as usual

• PDF effect suppresses the lower multiplicity rates, flattening out the overall distribution. 
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“APPLICATIONS”
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DESERTED ISLAND PHYSICS

Task: Calculate the normalized jet ratios for Drell-Yan at the LHC.

Direct Approach
1. Find favorite MonteCarlo

2. Wait a while (days/weeks?)

3. Count rates in each bin

4. Divide to obtain ratios

Scaling Approach
1. Everything starts of as Poisson

2. Add first inhomogenous term [from g->gg splitting]

3. Evaluate PDF function B

4. Fold together!

The emergence of scaling in QCD jets

Deserted island physics: calculate the (normalized) Drell Yan N
jet

ratios

Computational method

1. Find favorite parton shower MC

2. Wait a while (couple of weeks?)

3. Compute each N
jet

cross-section

4. Divide rates to obtain ratios

Scaling arguments

1. Everything starts as a Poisson

2. Add 1st order inhomogeneity [from

g ! gg splitting functions]

n̄ ⇠ 1 n̄0 ⇠ C
A

12C
F

3. Evaluate PDF function B

4. Fold together!
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DESERTED ISLAND PHYSICS

Task: Calculate the normalized jet ratios for Drell-Yan at the LHC.

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)

1. All radiative emissions start o↵ as a Poisson process

2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]

3. PDF kinematics mean that cost of producing additional jets is n dependent
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njets

1. Everything starts of as Poisson

2. Add first inhomogenous term

3. Fold in PDF effect (strong suppression of first bin) 

Monday, December 3, 12



26

DESERTED ISLAND PHYSICS

Task: Calculate the normalized jet ratios for Drell-Yan at the LHC.

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)

1. All radiative emissions start o↵ as a Poisson process

2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]

3. PDF kinematics mean that cost of producing additional jets is n dependent

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
�0

�1

�
n

�
n�1

njets

1. Everything starts of as Poisson

2. Add first inhomogenous term

3. Fold in PDF effect (strong suppression of first bin) 

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)

1. All radiative emissions start o↵ as a Poisson process

2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]

3. PDF kinematics mean that cost of producing additional jets is n dependent

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
�0

�1

�
n

�
n�1

njets

Monday, December 3, 12



26

DESERTED ISLAND PHYSICS

Task: Calculate the normalized jet ratios for Drell-Yan at the LHC.

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)

1. All radiative emissions start o↵ as a Poisson process

2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]

3. PDF kinematics mean that cost of producing additional jets is n dependent

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
�0

�1

�
n

�
n�1

njets

1. Everything starts of as Poisson

2. Add first inhomogenous term

3. Fold in PDF effect (strong suppression of first bin) 

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)

1. All radiative emissions start o↵ as a Poisson process

2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]

3. PDF kinematics mean that cost of producing additional jets is n dependent

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
�0

�1

�
n

�
n�1

njets

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)

1. All radiative emissions start o↵ as a Poisson process

2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]

3. PDF kinematics mean that cost of producing additional jets is n dependent

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
�0

�1

�
n

�
n�1

njets

Monday, December 3, 12



27

DESERTED ISLAND PHYSICS

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)
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DESERTED ISLAND PHYSICS

The emergence of scaling in QCD jets

The origin of jet scaling patterns (Illustration)
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APPLICATIONS

Automation of analyses
• Proposal by CMS to automate NP search via automation ~100,000 different 

observables and direct comparison to MonteCarlo. 
• Limitation is generating enough (high statistic) MonteCarlo, and my personal opinion is 

that there will be prohibitively many false positive. 

General searches via a scaling hypothesis

• QCD continuum background produces staircase scaling ratios (no structure)

• Many models of new physics produce an excess of jets starting at a certain multiplicity. 

• Seeing an excess in e.g. 8 jet bin via automated MonteCarlo a very tedious task. Many 

models of new physics produce an excess of jets starting at a certain multiplicity.
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PREDICTIONS IN DI-JET GAPS

The emergence of scaling in QCD jets

Validation of tools and scaling hypothesis

Atlas study on jets between gaps as a function of p? and �y
based on RIVET public-analysis from ATLAS JHEP 1109 (2011) 053
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Same for Z + jets analysis/figures

• Atlas public analysis on jet activity in rapidity 
gaps between “tagging” jets (ATLAS)
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The emergence of scaling in QCD jets

Jet Vetos in Higgs searches

Higgs searches via Weak Boson Fusion

– Early sensitivity in H ! WW ?/⌧⌧/�� [both Atlas and CMS dedicated WBF searches ]

– Large background from V (V ) + jets at O(↵2
s

)

Higgs WBF signal Z + jets background

Central Jet Veto [or how QCD can actually help us for once!]

– Widely separated (in ⌘) tagging jets and veto “in-between” QCD activity

– Signal gives less soft in-between
QCD radiation [Rainwater, Zeppenfeld]

– N
jet

distribution give us valuable
information on central jets

jet 1

jet 2

veto region

veto region

Proton Proton

Hard Process

• Gap fraction observable sensitive to many 
different types of QCD effects.

• Ideal testing ground for tools to predict veto efficiencies in Higgs WBF process.
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Figure 8. Left panel: exclusive jet ratios for Z + jets production at
p
S = 7 TeV. We require a

leading jet with p

lead
T � 150 GeV. All other jets have pT � pV = 30 GeV. The line shows a Poisson

shape with n̄ extracted from the first bin. Right panel: cross sections as a function of the event-wise
ratios of the jet transverse momenta in inclusive Z +3 jet production. While the leading jet has to
pass pleadT � 150 GeV additional jets are selected uniformly with just pT � pV = 30 GeV.

jet transverse momenta defined event-by-event. For this distribution we for once deviate

from our usual exclusive jet counting and consider events with at least three jets in the

final state. We consider the pT ratios first-over-leading (black), second-over-leading (green)

and second-over-first jet (red). With the leading jet pT � 150 GeV and the additional jets

selected uniformly with pT � 30 GeV we expect the first and second jet to peak around

the selection cut. This is confirmed by the simulated results that exhibit strong peaks

for the corresponding ratios around p

1st

T /p

lead

T ⇡ 0.2 and p

2nd

T /p

lead

T ⇡ 0.2. However, it is

interesting to note that the ratio p

2nd

T /p

1st

T does not peak around 1. Rather QCD favors

the first radiated jet to be significantly harder than the second. The obtained distribution

in fact turns out to be more or less flat between 0.25 and 1. It is certainly interesting to

study these observables in addition to the n
jets

distribution, as they contain complementary

information on the underlying QCD dynamics.

4.2 QCD gap jets

An interesting set of observables from the perspective of multi-jet final states are gap frac-

tions or gap jets. In that case we require a specific kinematic structure of hard and widely

separated jets and count the QCD jets in between. The core process is the production of

two widely separated hard jets.

A recent ATLAS study [65] identifies two forward jets, so-called tagging jets, either as

the highest pT (selection A) or the most forward and backward in rapidity (selection B).

The core di-jet system is defined in terms of p̄T = (pT,1 + pT,2)/2 and �y = |y
1

� y

2

|. The
gap fraction P

0

= �

0

/�

tot

is given by all events with no additional jet in between the two

– 24 –
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Origins of Jet scaling and implications for new physics

More on Staircase

Theoretical Basis

– Black-hat + Sherpa NLO Z and W + jets (Anti-kt; R = .4; E
T

> 30 GeV) [Berger et al.]

– Staircase improves for NLO versus LO

– No solid theoretical motivation

Experimental Observations

– Inclusive = exclusive ratios (for perfect staircase)
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Figure 4. Contribution from secondary emission to the squared matrix elements given in Eq. (2.21)
as a function of �⌘ for �� = 0,⇡/6,⇡/4,⇡/3 versus the constant primary contribution (horizontal
line). All curves are normalized to K = 64C2

F /(pT,1pT,2).

We consider the cross sections for the processes e+e� ! e

+

e

� + n� at
p
s = 500 GeV

using the exact tree-level matrix elements regulated using the kT measure

2min(E2

i , E
2

j )

s

(1� cos ✓ij) > y

cut

. (2.22)

�

excl

n = R

n
1/0 ⌘ e

�bn (2.23)

�

excl

n =
e

�n̄
n̄

n

n!
(2.24)

�

µ /

q + /

k

(q + k)2
! q

µ

q · k (2.25)

) �n ⇠ L

n

n!
e

�L with L ⇠ ↵

⇡

log

✓
Ehard

Esoft

◆
(2.26)

For small values of y
cut

we should find a Poisson pattern in the exclusive photon rates, which

we confirm in Fig. 5. For larger y
cut

the di↵erent multiplicity distributions start deviating

from the Poisson pattern. The ratios are pushed apart from one another, opposite to what

we expect from a staircase pattern. The reason is that each emission takes a non-negligible

amount of the total energy of the event and suppresses the phase space for subsequent

emissions. Going back to the two main scaling patterns this means that matrix element

and final-state phase space e↵ects are not responsible for the transition from Poisson to

staircase scaling.

– 13 –

Angular dependence on the emission type
•Squared matrix element (still in the eikonal limit) tells us that secondary emission tend to 

be closer together in angular space.

Eq. (2.14) starts at ✏2. Keeping only terms linear in ✏ we obtain the simple form

d�g(Q2)

dQ

2

⇡ �g(Q
2) �̃g(Q

2

, Q

2

0

)
�
�g(Q

2)� 1
�
. (2.17)

Including the boundary condition �g(Q2

0

) = u we can solve this,

�g(Q
2) =

1

1 +
(1� u)

u�̃g(Q2)

with �̃g(Q
2) = exp

"
�
Z Q2

Q2
0

dt�̃g(t, Q
2

0

)

#
. (2.18)

Neglecting the e↵ects of the running coupling, �̃g(Q2) is a Sudakov form factor. Including

the running coupling, Eq. (2.18) di↵ers from the standard Sudakov in Eq. (2.1) starting at

higher orders,
�̃g(Q2)

�g(Q2)
= exp

✓
� ↵

2

s

12⇡
b

0

log3
Q

2

Q

2

0

◆
. (2.19)

Taking derivatives of the generating functional in Eq. (2.18) at u = 0 we can compute the

exclusive jet rates

Pn�1

= �̃g(Q
2)
⇣
1� �̃g(Q

2)
⌘n�1

or R

(n+1)/n = 1� �̃g(Q
2) . (2.20)

These constant ratios define a staircase pattern. Comparing Eq. (2.11) and Eq. (2.20)

we see that in two distinct phase space regimes we find two clear scaling patterns for the

Yang-Mills or pure gluon case. Both of them can arise in final state gluon radiation, which

means they should in principle be observable in e

+

e

� ! jets events.

The all-order theoretical predictions for Poisson scaling, Eq. (2.11), and staircase scal-

ing, Eq. (2.20), we can compare to simulated e

+

e

� ! jets events. To cover both, a large

scale separation Q � Q

0

as well as a democratic scale Q ⇠ Q

0

, we use a large center-

of-mass energy of 2 TeV and a very small lower cuto↵ y

cut

= 5 · 10�7 for the Durham

jet-reconstruction algorithm [47]. In Fig. 3 we show jet ratios R

(n+1)/n for a large range

of n. Indeed, we observe Poisson as well as staircase scaling. The same behavior is known

from hadron colliders for example in pp ! �+jets production [8]: for relatively low n values

the emission is dominated by large scale di↵erences, inducing a Poisson pattern. For large

jet multiplicity individual emissions are not a↵ected by a large scale di↵erence, so we see

a staircase tail. While this transition is a solid QCD prediction it has not been studied

experimentally (yet).

2.3 Matrix element corrections

In all of the above discussion we only assume logarithmically induced emission and neglect

any kind of phase space e↵ects. A simple test case for the relative contributions of primary

vs subsequent emissions including additional phase space information is two-gluon emission

from a qq̄ dipole. The squared matrix element for strongly ordered two-gluon emissions

is [49]

|M(p
1

, p

2

)|2 = 32CF

pT,1pT,2


CA

✓
cosh(⌘

1

� ⌘

2

)

cosh(⌘
1

� ⌘

2

)� cos(�
1

� �

2

)
� 1

◆
+ 2CF

�
, (2.21)

– 11 –
• Secondary emission for large (small) jets correspond 

to intra-jet (jet) evolution.
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Phase space suppression

Matrix element corrections

32

OTHER EFFECTS ON SCALING FROM e+e-

• Clearly there is a maximal number of jets which are energetically or geometrically 

possible in a certain process and selection. 
• Most naive estimate of phase space suppression too small to explain the tilting in the 

staircase tail. (e.g. for R=.4, 10% over 20 multiplicities)

• But jets are preferentially emitted in the direction of the emitter, real phase space 

suppression much larger (though hard to estimate)

• The full matrix elements of course do 

not have a reason to follow an exact 

scaling pattern.  However, while the rates 

and ratios depend on these, the scaling 

(shape of the ratios in general does not).

Although NLO calculations contain one additional power of enhanced logarithms, this

might not be su�cient for high jet multiplicities. At NNLO, although there has been an

enormous amount of recent development [26], the number of fully di↵erential calculations

is limited, and an automated implementation is not foreseeable in the near future.

On the other hand, we know that jet radiation is enhanced by traceable logarithms.

This makes improved predictions for QCD observables based on resummation possible.

The general strategy is to redefine the perturbative series from powers of ↵s to including

the relevant logarithms; the simplified structure of these enhanced terms then allows for

a resummation to all orders. Once the resummed form is known we can match onto a

fixed order calculation and avoid double-counting. For Sudakov-type logarithms a general

method for this type of resummation is available [27], and for particular event shape ob-

servables an automated approach exists [28]. In LHC analyses, the resummation of finite

logarithms in the presence of a jet-veto scale is of interest [17, 29].

A numerical approach to resummation is provided by parton-shower simulations [30].

It is automated in the multi-purpose Monte Carlo generators Pythia [31], Herwig [32] and

Sherpa [33] to leading order in the strong coupling combined with the resummation of lead-

ing collinear logarithms (LO/LL). This method di↵ers from the previous approaches in that

the full spectrum of final state partons or hadrons is produced explicitly. While the parton

shower is well defined for relatively small transverse momenta of the jets it is not applicable

for hard jet radiation. However, this limitation is overcome by the CKKW [11], MLM [12],

and CKKW-L [34] jet-merging algorithms, that incorporate the tree-level matrix-element

corrections for the first few hardest emissions [30, 35].

A complementary strategy is provided by the MC@NLO [36] and POWHEG [37] ap-

proaches, that realize the matching of NLO calculations with parton showers. While these

methods guarantee NLO/LL accuracy only the first/hardest shower emission gets corrected

by the real-emission matrix element. Higher jet multiplicities are described in the parton-

shower approximation only. First attempts to combine the NLO/LL approaches with the

tree-level merging ansatz have been reported recently [38]. An unprecedented level of so-

phistication for predicting multi-jet final states is achieved by the promotion of merging

algorithms to next-to-leading order accuracy [39].

Even though we can nowadays simulate multi-jet events, a detailed understanding of

inclusive or exclusive n

jets

distributions at the LHC is still missing. Its universal features

have been studied since 1985 [7]. Scaling patterns can be conveniently displayed in the

ratio of successive exclusive jet cross-sections

R

(n+1)/n =
�n+1

�n
=

Pn+1

Pn
with Pn =

�n

�

tot

. (1.1)

dR

dn

⇠ 1� (n+ 1)R/4⇡

1� nR/4⇡
(1.2)

We define the jet multiplicity n as the number of jets in addition to the hard process,

e.g. �
1

for pure QCD di-jets is experimentally a 3-jet final state. Jets which are part of the

– 3 –
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Figure 5. Normalized ratios for the photon multiplicity in e

+
e

� ! e

+
e

� +n� as a function of the
resolution parameter ycut. The solid lines correspond to the perfect Poisson hypothesis. We use
Sherpa [33].

3 Hadron colliders

The analytic form of the fixed energy jet fractions given in Appendix B indicates that a

final state cascade initiated by a qq̄ pair follows neither a Poisson nor a staircase scaling

pattern at low multiplicities. However, from Z+jets production we know that essentially all

jet ratios are constant, with an even stronger suppression of R
1/0 [50]. This suggests that

additional e↵ects drive the jet ratios at hadron colliders towards a staircase pattern. One

possible cause is that incoming partons do not on average carry the same energy fractions x

for di↵erent final state jet multiplicities; in that case we might observe an initial-state phase

space e↵ect. Second, jets at hadron colliders are typically generated through initial state

radiation, and we know that the initial-state parton shower behaves somewhat di↵erently

from final state splittings.

3.1 Generating functional for incoming hadrons

The basis of the QCD treatment of hadron collider physics is collinear factorization which

allows us to employ the generating functional method [9, 10, 14]. Before we can apply

any of this to jet counting we need to clarify our choice of the factorization scale µF

in exclusive n

jet

rates, i.e. in the presence of a jet-counting or jet-veto scale pV . The

resummation properties of the DGLAP equation identify the combined renormalization and

factorization scale with a collinear cuto↵ below which initial state splittings are unresolved

and influence only the functional dependence on the partonic energy fraction x. Because we

are interested in radiated jets with pT � pV we identify the factorization and the jet-veto

scale, i.e. µF ⌘ pV . Note that this choice furthermore avoids generating additional finite

though potentially large logarithms in the ratio µF /pV [17].
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 Analytic resummation

PREDICTIONS FOR EXCLUSIVE RATES

• A great amount of success in predictions for 0-jet exclusive cross sections (e.g. H + 0 jets) 
[Banfi, Salam, Zanderighi; Becher, Neubert ; Stewart, Tackmann, Walsh]  

Parton Shower 
• In principle predictions for jet rates to arbitrarily high multiplicity.

• but...limitations on the formal accuracy (LL and NLL) of any prediction.

• Inherent limitations on PS evolution is the largest uncertainty in some analyses [POWHEG vs. 

MC@NLO]

Rate for producing exactly n-jets accompanying a given hard process

• Rule of thumb: if the jet bin in 
question has a large unresolved 
component, then a fixed order 
calculation will not suffice 

• High order calculation (NLO, NNLO...) contain unresolved components (in practice 
additional logarithms), but may still be a problem if too large (all orders approach necessary)

• Generalizing these techniques to higher multiplicities still work in progress.
• Some work on exclusive H + 2 jet rates [Forshaw et al.]

33

2 -jet inclusive 2 -jet exclusive

BN Cancellation Unresolved

Bloch-Nordsieck theorem
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Figure 1. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

form-factor. Expanding the exponential we see that Eq. (2.1) represents an arbitrary

number of soft and collinearly enhanced emissions, either resolved or unresolved.

To describe a parton-shower simulated event we note that the QCD evolution proceeds

as an integration of the product Sudakov along the virtuality t,

�(t) =
Y

ext lines

�j(t) ⌘ e

��
. (2.3)

The product defining � is over the appropriate factors for each external line, where j

denotes the particle flavor. Limiting ourselves to final state splittings this expression only

contains evolution kernels as shown in Eq. (2.1), and it is by construction guaranteed to

exponentiate with an appropriate expression �. As long as � is fully local and does not

depend on previous emissions it is guaranteed to produce a Poisson distribution for the

multiplicities. The exponentiated form in Eq. (2.3) immediately identifies n̄ = �. This

statement does not depend on the form of � or its dependence on the hard scale t. All that

matters is that each splitting does not change the subsequent evolution. In the remainder

of this paper we define all emissions directly contained in the expansion of Eq. (2.3) as

primary with respect to the core process.

The first splitting in the parton shower picture defines the single emission probability.

Following Fig. 1 a second emission can then appear from the original leg or o↵ the first

emission. For the former, this emission is contained in Eq. (2.3) and does not change

the Poisson pattern. The latter changes the exponential; we refer to it as secondary with

respect to the original hard process. From a scaling perspective the relevant questions are

first, what is the relative size of the two contributions; and second if we can change the

individual strengths of primary and secondary emissions through kinematic cuts.

In the parton shower approximation we can associate specific integrals over virtuality

with individual partonic structures appearing in the final state evolution. An alternative

evolution ordered in a consistent variable (e.g. angle) is logarithmically equivalent. Using

this formalism the primary contribution to two gluon emission o↵ a hard quark shown in

Fig. 1 is

�

primary(Q2

, Q

2

0

) = c

primary

Z Q2

Q2
0

dt �(Q2

, t)�g(t)

Z Q2

Q2
0

dt

0 �(Q2

, t

0)�g(t
0) . (2.4)

The coe�cient cprimary which includes the Sudakovs associated with the hard line is process

dependent, as this hard line can be either a quark or a gluon. The two external scales are
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the scale Q of the hard process and the lower cuto↵ scale Q

0

. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is

absorbed in c

primary. The simplest secondary contribution also shown in Fig. 1 is,
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dt�(Q2
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The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.

(1)
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In this limit we expand Eq. (2.4) and Eq. (2.5) around Q
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/Q ! 0 and find the leading

terms
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Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.

(2)
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⇡

log2
Q

Q

0

⌧ 1

Taking this limit of Eq. (2.4) and Eq. (2.5), we find
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling
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secondary / p
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, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.

For a known series of functions Pn we define
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Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use

Pn�1

instead of the usual Pn consistently.

The quark and gluon generating functionals to next-to-leading logarithmic accuracy

are
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The splitting kernels in the two expressions only di↵er in the integral boundaries for the

second emission. In the leading logarithmic approximation (in the exponent) for the Su-

dakov factors, we can perform the integrals in Eq. (2.4) and Eq. (2.5) in terms of error

functions. The full expressions are not particularly enlightening, but two specific limits

contain crucial information.
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Their ratio scales like �primary

/�

secondary / p
↵s logQ/Q

0

, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.

– 7 –

�

q

q̄

⇠ CA

⇠ CF

Figure 2. Simplest primary (left) and secondary contributions (right) assuming a core process
with a hard quark line.

the scale Q of the hard process and the lower cuto↵ scale Q

0

. If the primary emissions

are strongly ordered in the evolution variable, the corresponding phase space factor 1/2 is

absorbed in c

primary. The simplest secondary contribution also shown in Fig. 2 is,

�

secondary(Q2

, Q

2

0

) = c

secondary

Z Q2

Q2
0

dt�(Q2

, t)�g(t)

Z t

Q2
0

dt

0 �(t, t0)�g(t
0) . (2.5)
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second emission. In the leading logarithmic approximation (in the exponent) for the Su-
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contain crucial information.

(1)
↵s

⇡

log2
Q

Q

0

� 1

In this limit we expand Eq. (2.4) and Eq. (2.5) around Q

0

/Q ! 0 and find the leading

terms

�

primary =
c

primary

4

"
↵s

CA
log2

Q

Q

0

�
s

4↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆#

�

secondary =
c

secondary

4


(
p
2� 1)

r
↵s

C

3

A

log
Q

Q

0

+ O
✓
Q

2

0

Q

2

◆�
. (2.6)
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, i.e. the primary emissions

are logarithmically enhanced. In the limit of a large logarithm (high single emission

probability) the distribution of final state emissions are increasingly primary, and

therefore give a Poisson distribution.

Physically interpreting Eq. (2.6), a second logarithm in the secondary contribution

would come from the right-most Sudakov of Eq. (2.5). However, it has vanishing

support for Q ! 1 and does not appear in the approximate result. The emitted

gluon in this case spans a vanishing relative fraction in virtuality space where it may

emit an additional parton.
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling

pattern receives large contributions from subsequent or secondary splittings. Note

that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.

2.2 Generating functional for jet fractions

Following the argument presented in the last section we need a way to derive scaling

patterns for arbitrarily high parton multiplicities. The generating functional formalism for

QCD allows us to calculate resummed jet quantities [9, 10]. We construct a generating

functional in an arbitrary parameter u by demanding that repeated di↵erentiation at u =

0 gives exclusive multiplicity distributions. Di↵erent moments of the same generating

functional then produce more inclusive jet observables. This gives us a set of coupled

integral equations which we can solve in the limit of large and small emission probabilities.

We will find that the derived jet multiplicity distributions follow a Poisson or staircase

pattern, respectively.

For a known series of functions Pn we define
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Note that for generating functionals we always suppress the argument u. In the application

to gluon emission the explicit factor 1/n! corresponds to the phase space factor for identical

bosons. The exclusive jet rates Pn are defined in Eq. (1.1). In accordance with that

definition we only count radiated jets, for the generating functional that means we use
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is small and the final state is selected democratically. The formerly Poisson scaling
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The two contributions become logarithmically equivalent and di↵er by an O(1) con-

stant depending primarily on color factors. In this regime the emission probability

is small and the final state is selected democratically. The formerly Poisson scaling
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that to justify the logarithmic expansion we still require log2Q/Q

0

> 1 but not large

enough to spoil the small emission probability.

In Appendix A we use a toy model of secondary splittings to show that csecondary gives

the subsequent splitting parameter n̄0 in an iterated inhomogeneous Poisson distribution.
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