Searches for direct supersymmetric gaugino and slepton pair production in final states with leptons with the ATLAS detector



Janet Dietrich DESY 6th Annual Workshop of the Helmholtz Alliance 03.12.2012





#### **Motivation**

- > if coloured SUSY particles (  $\tilde{g}$ ,  $\tilde{q}$  ) are very massive while non-coloured SUSY particles are light
- → weak gauginos (charginos  $\tilde{\chi}_1^{\pm}$ ,  $\tilde{\chi}_2^{\pm}$  or neutralinos  $\tilde{\chi}_1^0$ ,  $\tilde{\chi}_2^0$ ,  $\tilde{\chi}_3^0$ ,  $\tilde{\chi}_4^0$ ) and sleptons ĩ may dominate the SUSY production at the LHC
- Iimits on squark/gluino masses are being pushed higher and naturalness favours gaugino masses around 100 GeV

 $\rightarrow$  search for events with missing transverse energy  $E_T^{miss}$  and leptons (electrons and muons)

```
Present the results for the 2 leptons analysis
(7TeV 4.7 fb<sup>-1</sup> arXiv: 1208.2884, accepted by
PLB) and
3 lepton analysis (8TeV 13fb<sup>-1</sup>
ATLAS-CONF-2012-154)
```



# **2(3)-LEPTON SUSY SEARCHES**

Looking for events with exactly 2(3) leptons (e or μ) (+ jets) and relative missing transverse energy E<sub>T</sub><sup>miss, rel</sup>

$$E_{\rm T}^{\rm miss, rel} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi_{\ell,j} \ge \pi/2 \\ E_{\rm T}^{\rm miss} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$$

 $\Delta \Phi$ =azimutal angle between the direction of  $E_T^{miss}$  vector and the nearest lepton or jet

→ reduce the impact of events where an object is badly reconstructed such that it is aligned with E<sub>T</sub><sup>miss</sup>



# **2-LEPTON SUSY SEARCHES**

- > define same charge (SS) and opposite charge (OS) signal regions depending on the SUSY process
- > four SR are optimized for slepton production and different gaugino decay modes





# **SM BACKGROUNDS- 2 LEPTON**





#### **RESULTS -2 Lepton 7TeV 4.7 fb<sup>-1</sup>**



| Signal Region     | Background               | Data |
|-------------------|--------------------------|------|
| $m_{\mathrm{T2}}$ | $32.8\pm3.2\pm6.3$       | 24   |
| OSjveto           | $161.7 \pm 6.7 \pm 30.8$ | 139  |
| SSjveto           | $11.0\pm1.5\pm3.9$       | 9    |
| 2jets             | $65.5 \pm 4.0 \pm 31.8$  | 78   |



2011 Data,  $\sqrt{s} = 7$  TeV  $\int \mathcal{L} dt = 4.7$  fb<sup>-1</sup> arXiv:1208.2884



J. Dietrich| Searches for gaugino and slepton pair production | Page 6

## **3-LEPTON SUSY SEARCHES**

require exactly three leptons of same-flavour opposite sign (SFOS) with m<sub>SFOS</sub> > 12 GeV

$$\tilde{\chi}_2^0 \to \tilde{\ell}\bar{\ell} \to \ell\bar{\ell}\tilde{\chi}_1^0$$

$$\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0 \to \ell \bar{\ell} \tilde{\chi}_1^0$$

neutralino decay via sleptons or off-shell Z-bosons 2 SRs with similar cuts – one SR with tighter cuts to enhance sensitivity to large mass splitting neutralino decay via on-shell Zbosons

| 3 leptons opposite charge                                               |                                                            | 3 lepton opposite charge                                                                                                       |
|-------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Z mass veto<br>E <sub>T</sub> <sup>miss</sup> > 75 GeV<br>b-jet veto    |                                                            | Z-candidate:  m <sub>SFOS</sub> -m <sub>Z</sub>   < 10 GeV<br>E <sub>T</sub> <sup>miss</sup> > 120 GeV<br>any number of b-jets |
| no transverse mass m <sub>⊤</sub> cut<br>lepton p <sub>T</sub> > 10 GeV | m <sub>⊤</sub> > 110 GeV<br>lepton p <sub>T</sub> > 30 GeV | m <sub>τ</sub> > 110 GeV<br>lepton p <sub>T</sub> > 10 GeV                                                                     |
| SR1a                                                                    | SR1b                                                       | SR2                                                                                                                            |

# **SM BACKGROUNDS- 3 LEPTON**

#### "reducible" fake background (at least one fake lepton):

dominate: top-antitop pair production, Z + jets  $\rightarrow$  determined with matrix method

> "real" irreducible backgrounds:

diboson (WW, ZZ), triboson (WWW, ZZZ, ZWW) and top-antitop W/Z production

 $\rightarrow$ using MC approach

main background WZ/ $\!\gamma^*$ 

 $\rightarrow$  determined via semi-data driven

approach

 $\rightarrow$  select three validation regions,

fit MC to data



J. Dietrich| Searches for gaugino and slepton pair production | Page 8



#### **RESULTS -3 Lepton 8TeV 13 fb<sup>-1</sup>**



| Signal Region | Background          | Data |
|---------------|---------------------|------|
| SR1a          | $50\pm8$            | 48   |
| SR1b          | $3.1\pm1.0$         | 4    |
| SR2           | $6.1^{+2.0}_{-1.2}$ | 4    |



2012 Data, 
$$\sqrt{s}=$$
 8 TeV $\int \mathcal{L} \mathrm{d}t = 13~\mathrm{fb}^{-1}$ ATLAS-COM-CONF-2012-192

SUSY Ref. Point 1:  $m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{L}}, m_{\tilde{\chi}_{1}^{0}} = 500, 500, 250, 0 \,\text{GeV}$ SUSY Ref. Point 2:  $m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{1}^{0}} = 250, 250, 0 \,\text{GeV}$ 

J. Dietrich| Searches for gaugino and slepton pair production | Page 9

# **SUSY MODELS**

#### pMSSM models

- gaugino xsection governed by the gaugino masses M<sub>1</sub>, M<sub>2</sub> and higgs mass parameter tanβ and μ
- > gluino/squark masses, left-handed sleptons > 2TeV
- right-handed sleptons degenerated  $m_{\tilde{\ell}} = \frac{m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_2^0}}{2}$
- grids are parameterized in M<sub>1</sub>,M<sub>2</sub> and μ, tanβ = 6



#### Simplified models

- Minimal particle content necessary to produce SUSY-like events
- parameterization in SUSY particles masses; only free parameter are:

mass of the neutralino1, sneutrino, left-handed slepton, chargino1 and neutralino2



# **SUSY MODELS**

#### Direct slepton models:

- > direct production of sleptons, models based on pMSSM, but left-handed sleptons are included via:  $m_{\tilde{\ell}_L} = m_{\tilde{\ell}_R}$
- masses of the gauginos except for LSP set to 2.5 TeV
- models contain only selectrons and smuons

$$m_{ ilde{e}}=m_{ ilde{\mu}}$$





# **2 LEPTON EXCLUSION LIMITS**

#### simplified model arid 200 Lange (GeV) 450 Lange (GeV) 450 Lange (GeV) 400 Lange (GeV ATLAS Observed limit (±1 $\sigma_{c}^{SUSY}$ Expected limit $(\pm 1 \sigma_{oxp})$ $\int L dt = 4.7 \text{ fb}^{-1} \sqrt{s} = 7 \text{TeV}$ $\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} \rightarrow 2 \times \widetilde{h}v(\widetilde{v}I) \rightarrow 2 \times hv\widetilde{\chi}_{1}^{0}$ 350F 300F = 0.5 250 200 150 100 50 0 150 200 250 300 350 400 450 100 500 $\widetilde{\chi}_{t}^{\pm}$ mass [GeV]

chargino masses between 110 and 330 GeV are excluded for a neutralino mass of 10 GeV best limit with SR m<sub>T2</sub> earlier gaugino searches focused on  $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$  production  $\rightarrow$  new mass limit on chargino 1 mass independent of the neutralino 2 mass

#### slepton grid



limits based on  $m_{T2}$  signal region results sensitivity decreases with  $m_{NLSP}-m_{LSP}$  $\rightarrow$  need considerable mass gap to the LSP

slepton masses between 90-185 GeV for 20 GeV neutralinos are excluded



## **3 LEPTON EXCLUSION LIMITS**





- > 95% exclusion limits for chargino-neutralino production in the pMSSM grids for
  - $M_1$ = 100, 140 and 250 GeV and light sleptons
- Imits are optimized using in each grid point the CL values from the most sensitive SR



# **3 LEPTON EXCLUSION LIMITS**

95% CL limit contours for chargino and neutralino production in the simplified model scenario with intermediate slepton decay and intermediate gauge boson decay





#### **SUMMARY**

- > dedicated searches for slepton/gaugino production in final states with 2/3 leptons have been performed with the ATLAS detector
- > searches are complementary and optimized independently
- > good agreement between ATLAS data and standard model prediction is observed, no significant excess was found
- ATLAS limits for slepton and chargino/neutralino production are set using full 2011 data (2-lepton search) and 13 fb<sup>-1</sup> 2012 data (3-lepton search)



 $m_{T2}$ 

- The stransverse mass  $m_{\rm T2}$  is defined for pair produced particles that each decay to two particles, out of which one goes undetected.
- If the undetected particles are massless, the two-lepton  $m_{\rm T2}$  distribution (for  $\tilde{\ell}$  pair production) has an endpoint given by

$$m_{\mathrm{T2}}^{2} = m_{\tilde{\ell}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2} + \frac{m_{\tilde{\ell}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}}{2m_{\tilde{\ell}}} \left( \sqrt{\left(\frac{m_{\tilde{\ell}}^{2} + m_{\tilde{\chi}_{1}^{0}}^{2}}{2m_{\tilde{\ell}}}\right)^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}} - \frac{m_{\tilde{\ell}}^{2} + m_{\tilde{\chi}_{1}^{0}}^{2}}{2m_{\tilde{\ell}}} \right)$$

- It can be shown that this equation simplifies to  $\approx m_{\tilde{\ell}} m_{\tilde{\chi}_1^0}$ .
- In particular,  $m_{T2}$  is a powerful tool rejecting WW background, since the  $WW m_{T2}$  distribution will end at the W mass.
- J.Phys. G29 (2003) 2343-2363, Phys.Lett. B463 (1999) 99-103.



 $\rm m_{\rm CT}$ 

 The m<sub>CT</sub> variable is defined for two pair-produced particles δ decaying to an invisible particle α and visible decay products χ<sub>i</sub>.

$$m_{\mathsf{CT}}(\chi_1,\chi_2) = \left[ E_t^2(\chi_1) + E_t^2(\chi_2) \right]^{1/2} - \left[ p_T^2(\chi_1) + p_T^2(\chi_2) \right]^{1/2}$$

• The  $m_{CT}$  variable can be constructed using combinations of leptons and jets. If  $m_{\chi_1} = m_{\chi_2} = m_{\chi}$  in the above equation, then there is an endpoint given by

$$m_{\mathsf{CT}}\left[m^{2}\left(\chi\right)\right] < m_{\mathsf{CT}}^{\max}\left[m^{2}\left(\chi\right)\right] = \frac{m^{2}\left(\chi\right)}{m\left(\delta\right)} + \frac{m^{2}\left(\delta\right) - m^{2}\left(\alpha\right)}{m\left(\delta\right)}$$

- The tt̄ system should fulfill this inequality for (δ, α) pairs of (W, ν),
   (t, W) and (t, ν).
- Each dilepton event in SR-2jets is checked against this inequality, and events consistent with tt kinematics are removed.

MATRIX METHOD

- Define a set of tight and loose object selection criteria.
- Determine the *real efficiency r*, i.e the probability for a real, prompt lepton to pass the tight selection. This is done using real data.
- Determine the *fake rate f*, i.e the probability for a fake, non-prompt lepton to pass the tight selection. This is done using MC truth.
- Let  $N_{TT}$  denote the number of events with two tight leptons,  $N_{TL}$  the number of events with one tight and one loose lepton and so on.
- Let  $N_{RR}$  denote the number of events with two real leptons,  $N_{RF}$  the number of events with one real and one fake lepton and so on.
- The number of events with at least one fake lepton is found by inverting the matrix below. For 3-Lepton, the method is applicable under the assumption that the leading lepton is always real.

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{bmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{bmatrix} \cdot \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$



J. Dietrich| Searches for gaugino and slepton pair production | Page 18

#### SYSTEMATIC UNCERTAINTIES

- The following sources of systematic uncertainty are considered (where applicable).
- Luminosity
- Cross section
- Jet Energy Scale
- Jet Energy Resolution
- Trigger Reweighting
- b-tag Efficiency
- Generator
- Parton Shower
- PDF

- Electron Efficiency
- Electron Energy Resolution
- Electron Energy Scale
- Muon Efficiency
- Muon Energy Resolution
- Muon Energy Scale
- Muon MS Momentum
- Muon ID Momentum



Exactly 2 leptons +

| SR-                          | $m_{T2}$          | OSjveto | SSjveto | 2jets                 |
|------------------------------|-------------------|---------|---------|-----------------------|
| charge                       | OS                | OS      | SS      | OS                    |
| flavour                      | any               | an      | iy      | SF                    |
| $m_{ll}$                     | Z-veto            | Z-veto  | -       | Z-veto                |
| signal jets                  | = 0               | =       | 0       | $\geq 2$              |
| signal <i>b</i> -jets        | -                 | -       |         | = 0                   |
| $E_{\rm T}^{\rm miss, rel.}$ | > 40              | > 1     | 00      | > 50                  |
| other                        | $m_{\rm T2} > 90$ | -       |         | m <sub>CT</sub> -veto |

Syst. uncert. in %

| SR-                  | $m_{T2}$ | OSjveto | 2jets | SSjveto |
|----------------------|----------|---------|-------|---------|
| Total statistical    | 9        | 4       | 6     | 13      |
| Total systematic     | 19       | 19      | 49    | 35      |
| Jet systematics      | 9        | 8       | 5     | 3       |
| Lepton systematics   | 14       | 1       | 5     | 1       |
| b-tagging efficiency | 1        | 1       | 14    | 0       |
| MC modelling         | 7        | 17      | 45    | 4       |
| Fake leptons         | 5        | 5       | 4     | 35      |

|                                        | SR-1077                  |                               |                           |                        |                        |  |
|----------------------------------------|--------------------------|-------------------------------|---------------------------|------------------------|------------------------|--|
|                                        | e+e-                     | $e^{\pm}\mu^{\mp}$            | u+u-                      | all                    | SF                     |  |
| Z+X                                    | $3.2 \pm 1.1 \pm 1.7$    | $0.3 \pm 0.1 \pm 0.2$         | $3.6 \pm 1.3 \pm 1.7$     | $7.1 \pm 1.7 \pm 2.1$  | $6.8 \pm 1.7 \pm 2.1$  |  |
| WW                                     | $2.3 \pm 0.3 \pm 0.4$    | $4.8 \pm 0.4 \pm 0.7$         | $3.5 \pm 0.3 \pm 0.5$     | $10.6 \pm 0.6 \pm 1.5$ | $5.8 \pm 0.4 \pm 0.9$  |  |
| tī, single top                         | $2.6 \pm 1.2 \pm 1.3$    | $6.2 \pm 1.6 \pm 2.9$         | $4.1 \pm 1.3 \pm 1.6$     | $12.9 \pm 2.4 \pm 4.6$ | $6.8 \pm 1.8 \pm 2.3$  |  |
| Fake leptons                           | $1.0 \pm 0.6 \pm 0.6$    | $1.1 \pm 0.6 \pm 0.8$         | $-0.02 \pm 0.01 \pm 0.05$ | $2.2 \pm 0.9 \pm 1.4$  | $1.0 \pm 0.6 \pm 0.6$  |  |
| Total                                  | $9.2 \pm 1.8 \pm 2.5$    | $12.4 \pm 1.7 \pm 3.1$        | $1.2 \pm 1.9 \pm 3.0$     | $32.8 \pm 3.2 \pm 6.3$ | $20.4 \pm 2.6 \pm 3.9$ |  |
| Data                                   | 7                        | 9                             | 8                         | 24                     | 15                     |  |
| $\sigma_{\rm vin}^{\rm obsicupl}$ (fb) | 1.6 (1.9)                | 1.7 (2.2)                     | 1.7 (2.1)                 | 2.6 (3.8)              | 2.0 (2.7)              |  |
|                                        |                          | SR-0                          | )Sjveto                   |                        |                        |  |
|                                        | e+e-                     | $\epsilon^* \mu^*$            | $\mu^{*}\mu^{-}$          | a                      | 11                     |  |
| Z+X                                    | $4.5 \pm 1.2 \pm 1.2$    | $3.0 \pm 0.9 \pm 0.5$         | $4.7 \pm 1.1 \pm 1.2$     | 12.2 ± 1               | .8±1.8                 |  |
| WW                                     | $8.8 \pm 1.8 \pm 4.4$    | $20.9 \pm 2.6 \pm 6.2$        | $13.3 \pm 1.9 \pm 3.5$    | 43.0 ± 3               | $.7 \pm 12.2$          |  |
| tī, single top                         | $21.1 \pm 2.3 \pm 4.2$   | $47.7 \pm 3.4 \pm 20.5$       | $27.5 \pm 2.5 \pm 9.0$    | 96.2 ± 4               | .8 ± 29.5              |  |
| Fake leptons                           | $2.9 \pm 1.2 \pm 1.2$    | $6.9 \pm 1.8 \pm 2.6$         | $0.4 \pm 0.6 \pm 0.3$     | $10.3 \pm 2$           | $2.2 \pm 4.1$          |  |
| Total                                  | $37.2 \pm 3.3 \pm 6.4$   | $78.5 \pm 4.7 \pm 20.9$       | $45.9 \pm 3.4 \pm 9.4$    | 161.7 ± 6              | 5.7 ± 30.8             |  |
| Data                                   | 33                       | 66                            | 40                        | 13                     | 39                     |  |
| $\sigma_{\rm vis}^{\rm obs(exp)}$ (fb) | 3.5 (4.0)                | 8.1 (9.6)                     | 4.3 (5.1)                 | 11.4 (                 | (14.1)                 |  |
|                                        |                          | SR                            | -2jets                    |                        |                        |  |
|                                        | e+e-                     | $e^{\pm}\mu^{\mp}$            | μ*μ-                      | S                      | F                      |  |
| Z+X                                    | 3.8 ± 1.3 ± 2.7          | _                             | $5.8 \pm 1.6 \pm 3.9$     | 9.6±2                  | .0 ± 5.1               |  |
| WW                                     | $6.4 \pm 0.5 \pm 4.3$    | _                             | $8.4 \pm 0.6 \pm 5.7$     | 14.8 ± 0               | ).7 ± 9.9              |  |
| 11, single top                         | $14.8 \pm 1.9 \pm 9.2$   | -                             | $22.1 \pm 2.1 \pm 20.7$   | 36.9 ± 2               | .9 ± 29.6              |  |
| Fake leptons                           | $2.5 \pm 1.2 \pm 1.5$    | —                             | $1.7 \pm 1.3 \pm 0.8$     | 4.2 ± 1                | .8 ± 2.3               |  |
| Total                                  | $27.5 \pm 2.6 \pm 10.6$  | _                             | $37.9 \pm 3.0 \pm 21.0$   | 65.5±4                 | $.0 \pm 31.8$          |  |
| Data                                   | 39                       | —                             | 39                        | 7                      | 8                      |  |
| $\sigma_{\rm vis}^{\rm obspects}$ (fb) | 7.1 (5.1)                | —                             | 9.7 (9.6)                 | 15.6                   | (13.9)                 |  |
|                                        |                          | SR-S                          | Sjveto                    |                        |                        |  |
|                                        | e+e-                     | e <sup>±</sup> µ <sup>±</sup> | μ*μ-                      | n                      | 11                     |  |
| Charge flip                            | $0.49 \pm 0.03 \pm 0.17$ | $0.34 \pm 0.02 \pm 0.11$      | -                         | $0.83 \pm 0.$          | 04±0.18                |  |
| Dibosons                               | $0.62 \pm 0.13 \pm 0.18$ | $1.93 \pm 0.23 \pm 0.36$      | $0.94 \pm 0.16 \pm 0.26$  | $3.50 \pm 0.$          | 31 ± 0.54              |  |
| Fake leptons                           | $3.2 \pm 0.9 \pm 1.7$    | $2.9 \pm 0.9 \pm 1.9$         | $0.6 \pm 0.6 \pm 0.3$     | 6.6 ± 1                | .4 ± 3.8               |  |
| Total                                  | $4.3 \pm 0.9 \pm 1.7$    | $5.1 \pm 1.0 \pm 1.9$         | $1.5 \pm 0.6 \pm 0.4$     | $11.0 \pm 1$           | .5 ± 3.9               |  |
| Data                                   | 1                        | 5                             | 3                         | 9                      | )                      |  |
| or (fb)                                | 0.8 (1.2)                | 1.5 (1.5)                     | 1.3 (0.8)                 | 2.0                    | (2.3)                  |  |









je 22

| Selection                         | SR1a             | SR1b       | SR2        |
|-----------------------------------|------------------|------------|------------|
| Targeted $\tilde{\chi}_2^0$ decay | Ĩ <sup>(*)</sup> | or Z*      | on-shell Z |
| $ m_{\rm SFOS} - m_Z $            | > 10             | )GeV       | < 10  GeV  |
| Number of <i>b</i> -jets          |                  | 0          | any        |
| $E_{ m T}^{ m miss}$              | > 75             | 5 GeV      | > 120  GeV |
| m <sub>T</sub>                    | any              | > 110  GeV | > 110 GeV  |
| $p_{\rm T}$ of leptons            | > 10  GeV        | > 30  GeV  | > 10  GeV  |

| Selection                   | VR1      | VR2       | VR3      |
|-----------------------------|----------|-----------|----------|
| $m_{ m SFOS} - m_Z _{ m T}$ | > 10 GeV | SFOS veto | < 10 GeV |
|                             | 30 GeV   | 50 GeV    | 30 GeV   |



| Selection              | SR1a            | SR1b            | SR2                     |
|------------------------|-----------------|-----------------|-------------------------|
| tt+V                   | $0.62 \pm 0.28$ | $0.13 \pm 0.07$ | $0.9 \pm 0.4$           |
| triboson               | $3.0 \pm 3.0$   | $0.7 \pm 0.7$   | $0.34 \pm 0.34$         |
| ZZ                     | $2.0 \pm 0.7$   | $0.30 \pm 0.23$ | $0.10\pm0.10$           |
| WZ (normalised)        | $34 \pm 4$      | $1.2 \pm 0.6$   | $4.7 \pm 0.8$           |
| Reducible Bkg.         | $10 \pm 6$      | $0.8 \pm 0.4$   | $0.012^{+1.6}_{-0.012}$ |
| Total Bkg.             | $50 \pm 8$      | $3.1 \pm 1.0$   | $6.1^{+2.0}_{-1.2}$     |
| Data                   | 48              | 4               | 4                       |
| SUSY Ref. Point 1      | $13.9 \pm 1.0$  | $11.4 \pm 0.9$  | $0.5 \pm 0.1$           |
| SUSY Ref. Point 2      | $0.9 \pm 0.1$   | $0.3 \pm 0.1$   | $8.0 \pm 0.6$           |
| Visible $\sigma$ (exp) | < 1.5 fb        | < 0.4 fb        | < 0.5 fb                |
| Visible $\sigma$ (obs) | < 1.3 fb        | < 0.5 fb        | $< 0.4  {\rm fb}$       |



| Selection         | VR1           | VR2             | VR3           |
|-------------------|---------------|-----------------|---------------|
| $t\bar{t}+V$      | $3.1 \pm 1.2$ | $2.5 \pm 0.8$   | $3.9 \pm 1.9$ |
| triboson          | $4 \pm 4$     | $2.1 \pm 2.1$   | $0.7 \pm 0.7$ |
| ZZ                | 64 ± 17       | $0.41 \pm 0.23$ | $49 \pm 4$    |
| WZ (normalised)   | $161 \pm 19$  | $4.5 \pm 0.7$   | $385 \pm 50$  |
| Reducible Bkg.    | $121 \pm 50$  | $27 \pm 13$     | $185 \pm 70$  |
| Total Bkg.        | $353 \pm 60$  | $36 \pm 14$     | $624 \pm 90$  |
| Data              | 391           | 36              | 692           |
| SUSY Ref. Point 1 | $1.2 \pm 0.1$ | $0.2 \pm 0.0$   | $0.0 \pm 0.0$ |
| SUSY Ref. Point 2 | $0.3 \pm 0.1$ | $0.1 \pm 0.0$   | $1.5\pm0.2$   |



| Selection              | SR1a            | SR1b            | SR2                     |
|------------------------|-----------------|-----------------|-------------------------|
| tt+V                   | $0.62 \pm 0.28$ | $0.13 \pm 0.07$ | $0.9 \pm 0.4$           |
| triboson               | $3.0 \pm 3.0$   | $0.7 \pm 0.7$   | $0.34 \pm 0.34$         |
| ZZ                     | $2.0 \pm 0.7$   | $0.30 \pm 0.23$ | $0.10\pm0.10$           |
| WZ (normalised)        | $34 \pm 4$      | $1.2 \pm 0.6$   | $4.7 \pm 0.8$           |
| Reducible Bkg.         | $10 \pm 6$      | $0.8 \pm 0.4$   | $0.012^{+1.6}_{-0.012}$ |
| Total Bkg.             | $50 \pm 8$      | $3.1 \pm 1.0$   | $6.1^{+2.0}_{-1.2}$     |
| Data                   | 48              | 4               | 4                       |
| SUSY Ref. Point 1      | $13.9 \pm 1.0$  | $11.4 \pm 0.9$  | $0.5 \pm 0.1$           |
| SUSY Ref. Point 2      | $0.9 \pm 0.1$   | $0.3 \pm 0.1$   | $8.0 \pm 0.6$           |
| Visible $\sigma$ (exp) | < 1.5 fb        | < 0.4 fb        | < 0.5 fb                |
| Visible $\sigma$ (obs) | < 1.3 fb        | < 0.5 fb        | < 0.4 fb                |

"SUSY Ref. Point 1" with intermediate sleptons,  $(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_L}, m_{\tilde{\chi}_2^0} = 500, 500, 250, 0 \text{ GeV})$ "SUSY Ref. Point 2" with no intermediate sleptons,  $(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0} = 250, 250, 0 \text{ GeV})$ 

J. Dietrich| Searches for gaugino and slepton pair production | Page 26



GAUGINO PRODUCTION



 $\begin{array}{c|c} \hline \mathsf{Mode}\,\mathsf{C} & & \mathsf{Mode}\,\mathsf{D} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$ 

- only Mode A and C are considered in the simplified models, because they have the highest cross section



MSSM: minimal supersymmetric standard model

SFOS: same flavor opposite sign pair (e.g. electron positron pair)

 $E_{T}^{miss}$ : missing energy in the transverse (i.e. perpendicular to beam axis) plain.

 $M_{\tau}$ : transverse mass. Invariant mass in the transverse plain formed by  $E_{\tau}^{\rm miss}$  and the lepton that does not belong to the SFOS pair that forms the best Z-candidate (mass)

 $tan\beta$ : ratio of vacuum expectation values of the two Higgs doublets

μ: Higgs mass parameter

m<sub>T2</sub>: related to transverse mass. End-point of WW expected at 90 GeV. J.Phys. G29 (2003) 2343-2363, Phys.Lett. B463 (1999) 99-103

m<sub>CT</sub>: top-tagging, calc. from selected jets and leptons:  $m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2$ 

 $E_{\rm T}^{\rm miss, rel.} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi_{\ell,j} \geq \pi/2 \\ E_{\rm T}^{\rm miss} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$