

Search for Chargino Neutralino production at CMS

04. December 2012

Wim de Boer, Felix Frensch, Christian Lüdtke, Martin Niegel, Fedor Ratnikov, Artur Speiser, Daniel Tröndle, **Stefan Wayand**, Florian Weiser KIT, Fakultät für Physik, Institut für Experimentelle Kernphysik

Outline

Logic

- EWKino signatures
- Object definitions
- 3 lepton analysis
- 2I OS+ 2jets analysis
- Results and interpretation

Logic

SUSY production at LCH is dominated by strongly produced SUSY particles

- Red line LHC exclusion curve
- Dashed lines expected exclusion for a fixed cross section
 - gluinio gluino production $\tilde{g}\tilde{g}$
- gluino squark production $\tilde{g}\tilde{q}$
- squark squark prodcution $\tilde{q} \tilde{q}$
- electroweak production *ew*

Electroweakly produced SUSY particles need luminosity
 Use simplified models to quantize EWKino results

EWKino – Signatures

4 leptons: $pp \rightarrow \tilde{\chi}_2 \tilde{\chi}_3 \rightarrow Z \tilde{\chi}_1 Z \tilde{\chi}_1 \rightarrow l^{\pm} l^{\pm} l^{\pm} l^{\mp} + MET$ – MET, invMass

3 leptons:

$$pp \to \tilde{X}_2 \tilde{X}_1^{\pm} \to W \tilde{X}_1 Z \tilde{X}_1 \to l^{\pm} l^{\pm} l^{\pm} + MET$$
$$pp \to \tilde{X}_2 \tilde{X}_1^{\pm} \to l \tilde{l} l \tilde{\nu} \to l^{\pm} l^{\pm} l^{\pm} + MET$$

– MT, MET, invMass

2 leptons opposite sign same flavor (OSSF) + 2 Jets: $pp \rightarrow \tilde{\chi}_2 \tilde{\chi}_3 \rightarrow Z \tilde{\chi}_1 Z \tilde{\chi}_1 \rightarrow l^{\pm} l^{\mp} j^{\pm} j^{\mp} + MET$ $pp \rightarrow \tilde{\chi}_2 \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1 Z \tilde{\chi}_1 \rightarrow l^{\pm} l^{\mp} j^{\pm} j^{\mp} + MET$ – MET, invMass

2 leptons same sign (SS): $pp \rightarrow \tilde{\chi}_2 \tilde{\chi_1}^{\pm} \rightarrow l \tilde{l} \, l \, \tilde{\nu} \rightarrow l^{\pm} \tilde{K} \, l^{\pm} + MET$ – MET

2 leptons opposite sign (OS): $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} \rightarrow l \, \tilde{\nu} \, \nu \, \tilde{l} \rightarrow l^{\pm} \, l^{\mp} + MET$ – MCT

Single PAS (CMS PAS SUS-12-022) including five exclusive Analysis targeting EWK SUSY production

CMS is excellent for Multilepton Searches

Trigger:

- Dilepton Trigger (ε ~ 90%)
 - First lepton Pt > 20 GeV
 - Second lepton Pt >10 GeV
- Lepton ID's
 - Electrons ($\epsilon \sim 90\%$) and Muons ($\epsilon > 90\%$) [https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults]
 - Pt > 10 GeV
 - |eta| < 2.4
 - (rel) Particle Flow isolation < 0.15
 - Hadronic Taus τ ($\epsilon \sim 50\%$) [arXiv:1109.6034]
 - Pt > 20 GeV
 - |eta| < 2.3

Jets and MET:

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults]

- Particle Flow Jets with Pt > 30 GeV
 - Use CSV b-tag [arXiv:1211.4462]
- Particle Flow MET

3 Lepton Search Region

Use 3D binning to optimize separation between signal and background: MET, MT and dilepton mass

Also MET binning in each region:[50,100],[100,150],[150,200],[200,∞] MET<50 GeV used for background methods b-jet veto to suppress ttbar background

Dominant 3 Lepton Backgrounds

Multiple independent background methods (data-driven)

WZ:

validated MC in control region

- ttbar:
 - Isolation sideband
 - B-tag and probe method

DY+Fake:

- Isolation sideband
- Combined fakeable object method
- Tight/Loose method

3 Lepton Result

Stefan Wayand Physics at the Terascale 2012

12/04/12

2 Leptons Opposite Sign Same Flavor + 2 Jets

Brief introduction

Major Background ttbar, DY+jets, WZ+ZZ:

- ttbar ->use flavor symmetry (e mu sample)
- DY+jets use gamma+jets for the MET shape
- WZ+ZZ validated MC

Data driven background predictions

Search region:

- Veto on events without Z-Candidate (75 GeV < invM(II) < 105 GeV) (suppress ttbar)
- Veto on events with b-jets (suppress ttbar)
- Invariant JetJet Mass has to be in W/Z range (70 GeV < invM(jj) < 111 GeV)
- Result binned in MET [0-30-60-80-100-120-150-200-inf] where low MET bins are control regions

SMS Interpretations into TChiWZ

- Results for $Z(\ell \ell)V(jj)$ search, 3ℓ search, and combination
- Z(ll)W(jj) has better sensitivity at high mass, -
- 3ℓ has better sensitivity at low mass
- Full exclusive -> combination limit better

complementarity

Other Interpretations

 $\tilde{\chi}_2^0$

There are many SMS under discussion. On this slide interpretation into TChiSlepSnu is shown

Conclusion

- CMS is an excellent detector for searching in channels with leptons
- No significant deviation from Background prediction can be observed
- Typical limits on chargino masses 300-600 GeV
- Results published in
 - CMS-PAS-SUS-12-022

Thank You

Plots are from:

- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12022

Backup

3 leptons WZ Control

ONZ

- MET > 30 GeV
- MT > 20 GeV

12/04/12

3 leptons Results

3 leptons Results

	$E_{\rm T}^{\rm miss}$ 0–30 GeV	$E_{\rm T}^{\rm miss}$ 30–60 GeV	$E_{\rm T}^{\rm miss}$ 60–80 GeV	E ^{miss} 80–100 GeV
Z + jets bkg	52823 ± 15847	14015 ± 4205	433 ± 130	40.9 ± 12.4
FS bkg	41.3 ± 7.2	49.5 ± 8.6	26.4 ± 4.7	17.9 ± 3.3
WZ bkg	9.5 ± 6.6	15.9 ± 11.2	6.6 ± 4.7	3.9 ± 2.7
ZZ bkg	2.1 ± 1.0	4.1 ± 2.1	2.2 ± 1.1	1.8 ± 0.9
rare SM bkg	0.3 ± 0.2	0.7 ± 0.3	0.4 ± 0.2	0.3 ± 0.2
total bkg	52876 ± 15847	14085 ± 4205	468 ± 130	64.7 ± 13.2
data	52485	14476	510	56
	E _T ^{miss} 100–120 GeV	E ^{miss} 120–150 GeV	E ^{miss} 150–200 GeV	$E_{\rm T}^{\rm miss} > 200 { m GeV}$
Z + jets bkg	$E_{\rm T}^{\rm miss}$ 100–120 GeV 7.0 ± 2.2	$E_{\rm T}^{\rm miss}$ 120–150 GeV 3.1 \pm 0.9	$E_{\rm T}^{\rm miss}$ 150–200 GeV 1.6 \pm 0.5	$E_{\rm T}^{\rm miss} > 200 { m GeV}$ 0.8 ± 0.3
Z + jets bkg FS bkg	$E_{\rm T}^{\rm miss}$ 100–120 GeV 7.0 \pm 2.2 11.3 \pm 2.2	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 120150 \ {\rm GeV} \\ 3.1 \pm 0.9 \\ 6.9 \pm 1.5 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 150200 \ {\rm GeV} \\ 1.6 \pm 0.5 \\ 2.4 \pm 1.1 \end{array}$	$E_{\rm T}^{\rm miss} > 200~{ m GeV}$ 0.8 ± 0.3 0.4 ± 0.3
Z + jets bkg FS bkg WZ bkg	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 100120 \ {\rm GeV} \\ \hline 7.0 \pm 2.2 \\ 11.3 \pm 2.2 \\ 2.1 \pm 1.5 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 120150 \ {\rm GeV} \\ 3.1 \pm 0.9 \\ 6.9 \pm 1.5 \\ 1.6 \pm 1.1 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 150200 \ {\rm GeV} \\ 1.6 \pm 0.5 \\ 2.4 \pm 1.1 \\ 1.0 \pm 0.7 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} > 200~{\rm GeV} \\ 0.8 \pm 0.3 \\ 0.4 \pm 0.3 \\ 0.5 \pm 0.5 \end{array}$
Z + jets bkg FS bkg WZ bkg ZZ bkg	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 100120 \ {\rm GeV} \\ \hline 7.0 \pm 2.2 \\ 11.3 \pm 2.2 \\ 2.1 \pm 1.5 \\ 1.0 \pm 0.5 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 120150 \ {\rm GeV} \\ 3.1 \pm 0.9 \\ 6.9 \pm 1.5 \\ 1.6 \pm 1.1 \\ 1.1 \pm 0.6 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 150200 \ {\rm GeV} \\ 1.6 \pm 0.5 \\ 2.4 \pm 1.1 \\ 1.0 \pm 0.7 \\ 0.8 \pm 0.4 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} > 200~{\rm GeV} \\ 0.8 \pm 0.3 \\ 0.4 \pm 0.3 \\ 0.5 \pm 0.5 \\ 0.7 \pm 0.7 \end{array}$
Z + jets bkg FS bkg WZ bkg ZZ bkg rare SM bkg	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 100120 \ {\rm GeV} \\ \hline 7.0 \pm 2.2 \\ 11.3 \pm 2.2 \\ 2.1 \pm 1.5 \\ 1.0 \pm 0.5 \\ 0.2 \pm 0.1 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 120150 \ {\rm GeV} \\ 3.1 \pm 0.9 \\ 6.9 \pm 1.5 \\ 1.6 \pm 1.1 \\ 1.1 \pm 0.6 \\ 0.3 \pm 0.1 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 150200 \ {\rm GeV} \\ 1.6 \pm 0.5 \\ 2.4 \pm 1.1 \\ 1.0 \pm 0.7 \\ 0.8 \pm 0.4 \\ 0.2 \pm 0.1 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} > 200~{\rm GeV} \\ 0.8 \pm 0.3 \\ 0.4 \pm 0.3 \\ 0.5 \pm 0.5 \\ 0.7 \pm 0.7 \\ 0.2 \pm 0.2 \end{array}$
Z + jets bkg FS bkg WZ bkg ZZ bkg rare SM bkg total bkg	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 100120 \ {\rm GeV} \\ \hline 7.0 \pm 2.2 \\ 11.3 \pm 2.2 \\ 2.1 \pm 1.5 \\ 1.0 \pm 0.5 \\ 0.2 \pm 0.1 \\ \hline 21.7 \pm 3.5 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 120150 \ {\rm GeV} \\ 3.1 \pm 0.9 \\ 6.9 \pm 1.5 \\ 1.6 \pm 1.1 \\ 1.1 \pm 0.6 \\ 0.3 \pm 0.1 \\ 13.0 \pm 2.2 \end{array}$	$\begin{array}{c} E_{\rm T}^{\rm miss} \ 150\mathchar`-200 \ {\rm GeV} \\ 1.6 \pm 0.5 \\ 2.4 \pm 1.1 \\ 1.0 \pm 0.7 \\ 0.8 \pm 0.4 \\ 0.2 \pm 0.1 \\ 6.1 \pm 1.5 \end{array}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$ 0.8 ± 0.3 0.4 ± 0.3 0.5 ± 0.5 0.7 ± 0.7 0.2 ± 0.2 2.5 ± 0.9

2 leptons same sign (SS)

Major Background WZ, fakes, misidentified sign:

- WZ validate MC in control region (inverted Z-veto)
- Fakes determine fake rate in side-band
- Misidentified sign (electrons), determine in Z-> ee and apply on 2I OS sample
- Search region:
 - Require Z-veto
 - 3 lepton veto
 - MET >200

Data and prediction agrees well \rightarrow Set limits on SMS

2 leptons same sign (SS)

	$120 < E_{\rm T}^{\rm miss} < 200 {\rm GeV}$	$120 < E_{\rm T}^{\rm miss} < 200 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ >200 GeV	$E_{\rm T}^{\rm miss}$ >200 GeV
	$N_{jets} \leq 2$, $N_{bjets} = 0$	$N_{jets} \leq 2$, $N_{bjets} = 0$	-	-
		3 rd lepton veto		3 rd lepton veto
Double Fakes	0.05 ± 0.05	0.02 ± 0.04	-0.01 ± 0.02	0.01 ± 0.02
Single Fakes	5.59 ± 4.50	1.31 ± 1.38	3.45 ± 1.90	0.66 ± 0.78
Charge MisID	0.42 ± 0.03	0.40 ± 0.03	0.14 ± 0.01	0.13 ± 0.01
Rare SM	4.99 ± 2.64	4.26 ± 2.30	4.70 ± 2.50	4.26 ± 2.30
WZ Prod.	8.35 ± 1.65	6.18 ± 1.25	2.66 ± 0.54	$\textbf{2.13} \pm \textbf{0.44}$
Total Bkg	22.40 ± 5.45	12.16 ± 2.88	10.95 ± 3.16	7.20 ± 2.44
Data	14	11	11	7

SMS interpretations

Stefan Wayand Physics at the Terascale 2012