



## WP3.1: Bestrahlungen und Charakterisierung von Auslesekomponenten und Detektorelementen

Felix Bögelspacher, Alexander Dierlamm, Thomas Müller

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK





## Workpackage 3.1



- Title: Bestrahlungen und Charakterisierung von Auslesekomponenten und Detektorelementen
- Participating institute and group leader: Karlsruhe (Th. Müller)
- In this working package we continue the research on radiation hard detector elements. The funding allows us to employ a technician who performs the irradiations and to cover irradiation costs for institutes within the HHA.
- Main interest is the radiation hardness of silicon sensors, but also other components like optical fibers to measure environmental parameters or ASICs have been investigated.

# Karlsruhe Institute of Technology

# 2010

- A total of 4.5h irradiation time
  - Preparation of a large irradiation campaign within CMS. Irradiation of samples for cross-calibration of the participating institutes.
  - Investigation of energy loss and increase in radiation damage in several layers of silicon. Three layers of 300µm thick silicon are possible within an increase in damage of 15%.
- The understanding of the measurements of irradiated structures is assisted by device simulations. With the funding of this WP we were able to acquire a good simulation server with large memory and several cores.





# 2011



- Total of 120h X-ray irradiations for HLL Munich
- Total of 15h proton irradiations for several groups
- Papers resulting from irradiations within this WP:
  - M. Köhler, R. Bates, G.-F. Dalla Betta, C. Fleta, J. Härkönen, K. Jakobs, M. Lozano, et al. "Measurements with Irradiated 3D Silicon Strip Detectors" Nuclear Physics B - Proceedings Supplements 215, Nr. 1 (June 2011): 247–249
  - A. Macchiolo, L. Andricek, M. Beimforde, H.-G. Moser, R. Nisius, R.H. Richter, und P. Weigell "Performance of thin pixel sensors irradiated up to a fluence of and development of a new interconnection technology for the upgrade of the ATLAS pixel system" NIM A 650, Nr. 1 (Sep 2011): 145–149
  - U. Parzefall, et al. "Silicon detectors for the sLHC" NIM A 658, Nr. 1 (Dec 2011): 11–16
  - M. Köhler, R. Bates, C. Fleta, K. Jakobs, M. Lozano, Ch. Parkes, U. Parzefall, G. Pellegrini, and J. Preiss

"Comparative measurements of highly irradiated n-in-p and p-in-n 3D silicon strip detectors" NIM A 659, Nr. 1 (Dec 11, 2011): 272–281

P. Weigell, M. Beimforde, Ch. Gallrapp, A. La Rosa, A. Macchiolo, R. Nisius, H. Pernegger, and R.H. Richter

"Characterization and performance of silicon n-in-p pixel detectors for the ATLAS upgrades" NIM A 658, Nr. 1 (Dec 2011): 36–40

- C. Gallrapp, A. La Rosa, A. Macchiolo, R. Nisius, H. Pernegger, R.H. Richter, and P. Weigell "Performance of novel silicon n-in-p planar pixel sensors" NIM A 679, Nr. 0 (July 2012): 29–35
  - J.-W- Tsung, M. Havranek, F. Hügging, H. Kagan, H. Krüger, and N. Wermes "Signal and noise of diamond pixel detectors at high radiation fluences" Journal of Instrumentation 7, Nr. 09 (Sep 2012): P09009–P09009

# Characterization and performance of silicon n-in-p pixel detectors for the ATLAS upgrades

and

### Performance of novel silicon n-in-p planar pixel sensors

P. Weigell, A. Macchiolo (Munich)

### From conclusions:

- The stable operation at 700V for several days indicates that the risk of sparks is low if Benzo-Cyclo-Butene is applied.
- At 5.10<sup>15</sup>n<sub>eq</sub>cm<sup>-2</sup>:
  - Signal over threshold of more than three, together with low noise, has been obtained
  - The tracking efficiency is (98.6±0.3)% with threshold of 3200 e, and biasing at 600 V.



NIM A 658 (2011): 36–40 NIM A 679 (2012): 29–35





6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm

6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm

Institut für Experimentelle Kernphysik

#### Performance of thin pixel sensors irradiated up to a fluence of 10<sup>16</sup>n<sub>eq</sub>/cm<sup>2</sup> and development of a new interconnection technology for the upgrade of the ATLAS pixel system

- A. Macchiolo, P. Weigell (Munich)
- From conclusions:

04.12.2012

6

- A first production of n-in-p pixel sensors with an active thickness of 75 and 150 µm has been completed in view of the ATLAS pixel detector upgrades.
- CCE measurements performed after irradiation show that it is possible to recover 100% of the charge obtained before irradiation in the 75 mm thick sensors at a fluence of  $10^{16}n_{eq}/cm^2$



HV

n

SLID

p-substrate





thin sensors





### Silicon detectors for the sLHC

- U. Parzefall (Freiburg) for RD50
- From conclusions:
  - Several studies show that p-type planar silicon detectors have sufficient radiation hardness to be operated up to fluences in the order of a few 10<sup>15</sup> n<sub>eq</sub>cm<sup>-2</sup>, provided that a sufficiently high bias voltage can be supplied.
  - 3D detectors would be able to offer a comparable radiation hardness at significantly lower bias voltages.



6th Annual Workshop of HHA "Physics at the Terascale"

### **Measurements with Irradiated 3D Silicon Strip Detectors**



M. Köhler, U. Parzefall (Freiburg)

#### From text:

- The MPV measured at 230 V (after 2e15n<sub>eq</sub>/cm<sup>2</sup>) is 31000e-. This observation indicates that the electric field, increased by radiation induced defects, is sufficiently high to cause charge multiplication due to impact ionisation.
- The signal measured with the irradiated detector is less uniform, larger signals are measured for tracks impinging close to the junction column.





(b) Irradiated to  $2\times 10^{15}\,\mathrm{n_{eq}/cm^2},\,230\,\mathrm{V}.$ 

6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm

### Comparative measurements of highly irradiated n-in-p and p-in-n 3D silicon strip detectors

- M. Köhler, U. Parzefall (Freiburg)
- From conclusions:
  - It could be shown that both designs yield the same signal after the highest irradiation fluence of 2e16n<sub>eq</sub>/cm<sup>2</sup>: 15ke- at ~400 V (CCE~70%).
  - The noise distribution of the highly irradiated detectors deviates from a Gaussian, when high bias voltages are applied. This effect is possibly caused by micro-discharges.





6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm

# Signal and noise of diamond pixel detectors at high radiation fluences



J.-W. Tsung, N. Wermes (Bonn)

#### From conclusions:

- The signal development with fluence is extracted from dedicated irradiation campaigns up to fluences of 10<sup>16</sup> p/cm<sup>2</sup> at two different energies, 25MeV and 24GeV protons, as well as from published data on silicon.
- The resulting SNR leads to the conclusion that the SNR of diamond pixel sensors exceeds that of planar Si at fluences above several 10<sup>15</sup> p/cm<sup>2</sup>.



A. Dierlamm

# 2012



- Total of 1h proton irradiation for HLL Munich
  - Test of SOI n-in-p sensors on FE-I4 and Parylene coating
- Construction of a new irradiation box allowing up to 4 layers and N<sub>2</sub> flushing to all layers (currently 2 nozzles blowing on target)
- 2 diploma theses profiting from HHA support:
  - S. Frech, Quantifizierung der Strahlenhärte von Siliziumstreifensensoren aus unterschiedlichen Grundmaterialien, KIT, 2012, IEKP-KA/2012-021
  - M. Strelzyk, Design studies of n-in-p silicon strip sensors for the CMS Tracker, KIT, 2012, IEKP-KA/2012-022





# Design studies of n-in-p silicon strip sensors for the CMS Tracker

- M. Strelzyk (Karlsruhe)
- E.g.: Strip isolation T-CAD study
  - p-spray technique requires some care to avoid high field break-down before irradiation
  - p-stop works for a wider range of concentrations and should not be placed close to the strip implants







6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm Institut für Experimentelle Kernphysik



### Quantifizierung der Strahlenhärte von Siliziumstreifensensoren aus unterschiedlichen Grundmaterialien





6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm

### Quantifizierung der Strahlenhärte von Siliziumstreifensensoren aus unterschiedlichen Grundmaterialien

- S. Frech (Karlsruhe)
- E.g.: Charge collection
  - Thin sensor materials become superior to standard 320µm sensor at around 1e15neq/cm<sup>2</sup> especially for low bias voltages
  - No reasonable signal seen on FZ320N at 1.5e15n<sub>eq</sub>/cm<sup>2</sup> (max. expected fluence for CMS Strip Tracker)





#### A. Dierlamm

1,5x1015

Institut für Experimentelle Kernphysik

14 04.12.2012

IEKP-KA/2012-021

6th Annual Workshop of HHA "Physics at the Terascale"

5000

0,0

5,0x10<sup>14</sup>

1.0x10<sup>15</sup>

Fluenz [n<sub>eo</sub>/cm<sup>2</sup>]

# Conclusion



- Many irradiation studies have been performed with the help of the Alliance funding resulting in several publications (including acknowledgement of Alliance! ③).
- Due to the participation of many Alliance members this workpackage was successfully run in the sense of the Alliance initiative.

Thank you!



# Backup

## **Proton Irradiation Facility**





Irradiation box on XY-stage with beam line. Samples are fixed to AI-frames inside the box and scanned to reach uniform exposure.

Proton Energy Proton Current Max. Object Width Max. Object Height N2-Cooling Temp. Beam Diameter ~23MeV (25.3MeV at extraction) ~1.5µA (100nA - 20µA) 44cm 17cm ≥-30°C ~5-10mm



**17** 04.12.2012

6th Annual Workshop of HHA "Physics at the Terascale"

A. Dierlamm Institut für Experimentelle Kernphysik



### X-Ray Setup





Accelerating Voltage Electron Current Beam Spot Diameter Dose Rate 20-60 kV 2mA - 33mA (Pmax=2kW) 1-2cm < 18kGy/h (depends on distance and filter)

