Four Top Final States At NLO QCD

MALGORZATA WOREK

WUPPERTAL UNI.

Helmholtz Alliance

6TH ANNUAL HELMHOLTZ ALLIANCE WORKSHOP ON "PHYSICS AT THE TERASCALE" 3-5 DECEMBER 2012, DESY-HAMBURG

MOTIVATIONS

- □ Successful running of collisions at 7 TeV and 8 TeV @ LHC
- □ November 2012 Delivered: *L* = 21 fb⁻¹ at 8 TeV
- □ The large statistics have opened a window on entirely new measurements & analysis of novel more complex final states
- □ Reducing theoretical uncertainties for correct interpretation of the data is needed
- □ A theoretical accuracy at least at NLO is desirable & demanded for most analyses
 - * More reliable theoretical error related to the scale dependence
 - Normalization and shape of distributions
 - Improved description of jets
 - Correct choice of scales for many scale processes: V+ jets, ttH, ttbb, …

The strongest argument in support of higher order calculations is their success in an accurate description of the LEP and TeVatron data !

FOUR TOPS

□ LHC energy is sufficient to produce 4 tops at a sensible rate

- □ Interesting channel to probe several realizations of BSM Physics
 - Models of Higgs and top compositeness
 - Models involving the production of new colored resonances
 - Kaluza-Klein gluons from the Randall-Sudrum warped extra dimensions
 - Many models predict effective four-top quark interactions
 - ♦ New processes such as $pp \rightarrow GG$ and $pp \rightarrow ttG$ with $G \rightarrow tt$
 - ✤ Major background for many processes arising from (...)MSSM
 - Heavy Higgs boson production
 - Long cascade decays of colored new particles like squarks or gluinos

Precise theoretical description of the four-top production rate in the Standard Model may help to constrain new physics scenarios

FOUR TOPS

□ LO cross section @ LHC with $m_t = 173.2 \text{ GeV}$ and CTEQ PDF (CT09MC1)

★ LHC
$$_{7 \text{ TeV}} \rightarrow \sigma_{\text{LO}} = (0.73 \pm 0.45) \text{ fb}$$

 \star LHC_{8 TeV} \rightarrow σ_{LO} = (1.3 ± 0.8) fb

□ For integrated luminosity of 20 fb⁻¹ this correspond to ~20 events

♦ LHC _{14 TeV} → σ_{LO} = (13.1 ± 7.4) fb

□ For integrated luminosity of 100 fb⁻¹ ~1300 events @ 14 TeV

NLO QCD corrections @ 14 TeV a necessary step towards a correct interpretation of the possible signals of new physics that may arise in this channel

STRUCTURE OF NLO CALCULATIONS

$$\sigma^{\rm NLO} = \int_{m} d\sigma^{\rm B} + \int_{m+1} d\sigma^{\rm R} - \int_{m+1} d\sigma^{\rm A} + \int_{m+1} d\sigma^{\rm A} + \int_{m} d\sigma^{\rm V}$$
$$= \int_{m} d\sigma^{\rm B} + \int_{m+1} \left[d\sigma^{\rm R} - d\sigma^{\rm D} \right] \left[+ \int_{m} \left[d\sigma^{\rm V} + d\sigma^{\rm I} + d\sigma^{\rm KP} \right] \right]$$

□ Main Building Blocks of **HELAC-NLO** (Virtual Part)

- Evaluation of one-loop amplitude HELAC-1LOOP
- Reduction at integrand level OPP method CUTTOOLS
- Evaluation of scalar functions ONELOOP

Ossola, Papadopoulos, Pittau '07, '08 Draggiotis, Garzelli, Papadopoulos, Pittau '09 Garzelli, Malamos, Pittau '09 van Hameren, Papadopoulos, Pittau '09 van Hameren, '10

STRUCTURE OF NLO CALCULATIONS

$$\sigma^{\rm NLO} = \int_{m} d\sigma^{\rm B} + \int_{m+1} d\sigma^{\rm R} - \int_{m+1} d\sigma^{\rm A} + \int_{m+1} d\sigma^{\rm A} + \int_{m} d\sigma^{\rm V}$$
$$= \int_{m} d\sigma^{\rm B} + \int_{m+1} \left[d\sigma^{\rm R} - d\sigma^{\rm D} \right] + \int_{m} \left[d\sigma^{\rm V} + d\sigma^{\rm I} + d\sigma^{\rm KP} \right]$$

□ Main Building Blocks of **HELAC-NLO** (Real Emission Part)

- Implementation of Catani-Seymour dipoles HELAC-DIPOLES
- Extended for arbitrary helicity eigenstates of the external partons
- Phase space restriction on the dipoles phase space

Czakon, Papadopoulos, Worek '09

Fixed Scale: $2M_T$

Natural scale - the mass of the heavy particle appearing in the process
Production relatively close to the threshold as defined by particle masses
14 TeV and MSTW2008 PDF set

PROCESS	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}^{\alpha_{\rm max}=1}$ [fb]	$\sigma_{\rm NLO}^{\alpha_{\rm max}=0.01}$ [fb]	K-Factor	[%]
$pp \to t\bar{t}t\bar{t} + X$	12.056(6)	15.33(2)	15.35(3)	1.27	27

$$\sigma_{t\bar{t}t\bar{t}}^{\text{LO}}(\text{LHC}_{14\text{TeV}}, m_t = 173.2 \text{ GeV}, \text{MSTW2008lo}) = 12.056^{+9.364(+78\%)}_{-4.876(-40\%)} \text{ fb}$$

$$\sigma_{t\bar{t}t\bar{t}}^{\text{NLO}}(\text{LHC}_{14\text{TeV}}, m_t = 173.2 \text{ GeV}, \text{MSTW2008nlo}) = 15.33^{+3.95(+26\%)}_{-3.81(-25\%)} \text{ fb}.$$

Scale uncertainty at LO at the level of 78% (59% after symmetrization)
At NLO the scale uncertainty is reduced down to 26%

THEORETICAL UNCERTAINTY

Scale dependence of the LO cross section with the individual contributions
Scale dependence of the LO and NLO cross sections

PDF UNCERTAINTY

□ The best fit PDFs and a set of 40 PDF parameterizations inside MSTW2008 set

- \Box Describes ±1 σ variation of all parameters used in the global fit
- □ Asymmetric PDF uncertainties +5.7% and −4.5%

Does not account for the theoretical assumptions that enter into parameterization
Different PDF set e.g. CTEQ PDF with different theoretical assumptions

 $\sigma_{t\bar{t}t\bar{t}t\bar{t}}^{\text{LO}}(\text{LHC}_{14\text{TeV}}, m_t = 173.2 \text{ GeV}, \text{CT09MC1}) = 11.414(8) \text{ fb}$

 $\sigma_{t\bar{t}t\bar{t}\bar{t}}^{\text{NLO}}(\text{LHC}_{14\text{TeV}}, m_t = 173.2 \text{ GeV}, \text{CT10}) = 14.37(2) \text{ fb}.$

□ The MSTW2008 results are larger than the CTEQ by **5.6%** at LO and **6.7%** at NLO

- □ Comparable to the individual estimates of MSTW2008 PDF systematics
- □ Well below the theoretical uncertainties due to scale dependence

- Differential K factor
- □ Transverse momentum distribution of tt pair and of the top quark
- □ Distribution of the total transverse energy of the 4t system
- Distortions at the level of **60% 80%**
- □ Large and negative NLO corrections affect the tails
- □ NLO error bands do not fit within the LO ones

DYNAMICAL SCALE: $H_T/4$

□ 14 TeV and MSTW2008 PDF set and with the dynamical scale

$$\sigma_{t\bar{t}t\bar{t}t}^{\text{LO}}(\text{LHC}_{14\text{TeV}}, m_t = 173.2 \text{ GeV}, \text{MSTW}_{2008\text{lo}}) = 13.891^{+11.074(+80\%)}_{-5.711(-41\%)} \text{ fb}$$

 $\sigma_{t\bar{t}t\bar{t}}^{\text{NLO}}(\text{LHC}_{14\text{TeV}}, m_t = 173.2 \text{ GeV}, \text{MSTW}_{2008\text{nlo}}) = 16.87^{+4.04(+24\%)}_{-4.26(-25\%)} \text{ fb}$

PROCESS	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}^{\alpha_{\rm max}=1}$ [fb]	$\sigma_{\rm NLO}^{\alpha_{\rm max}=0.01}$ [fb]	K-Factor	[%]
$pp \to t\bar{t}t\bar{t} + X$	13.891(9)	16.87(2)	16.86(3)	1.21	21

 \Box Before for the fixed scale $2m_t$

- ↔ Cross section and K-factor σ^{LO} = 12.056 fb, σ^{NLO} = 15.33 fb, K =1.27
- ✤ Scale dependence LO = +78% & -40%, NLO = +26% & -25%

THEORETICAL UNCERTAINTY

Scale dependence of the LO cross section with the individual contributions
Scale dependence of the LO and NLO cross sections

- □ Results for the integrated cross sections have only slightly changed
- Constant(-ish) differential K-factors for the distributions
- □ Moderate and positive corrections of the order or **20**% over the whole range
- □ NLO error bands fit within LO error bands

The fixed order approximation is meaningful, when the improved scale choice affects NLO cross sections to a much lower extent than the LO ones

FIXED SCALE VS DYNAMICAL

Looking only at the total cross section both scale choices are in good shape
Results agree well within the corresponding theoretical errors

□ Differential cross sections show large distortions up to 80% for fixed scale

- □ Large negative corrections in the tails of several distributions
- □ Accurate description of the shapes of observables only via full NLO QCD
- Moderate, positive and almost constant corrections of the order of 20% for all investigated observables for dynamical scale
- □ Efficiently accommodates for the multi-scale kinematics of the process
- □ Can be used in LO calculation together with some global K—factor
- □ Well approximate the full NLO QCD calculation
- Easily matched/merged with parton shower programs to obtain realistic events

FINAL REMARK

□ Our NLO QCD predictions for tttt final state @ LHC with 14 TeV

 $\sigma^{\text{NLO}} = 17 \pm 4 \text{ [scales]} \pm 1 \text{ [PDF] fb}$

Bevilacqua, Worek '12

For integrated luminosity of 100 fb⁻¹ we can have ~ 1700 events
For comparison typical predictions of new physics scenarios

Effective four top interactions, Kaluza-Klein gluons or top-philic Z' are set in the range:

 $\sigma = (5 - 100) \text{ fb} \text{ for } m_{\text{new}} = 1 \text{ TeV}$

 $\sigma = (1 - 20)$ fb for $m_{new} = 1.5$ TeV

 $\sigma < 1 \text{ fb}$ for masses greater than 2 - 3 TeV

 m_{new} is the mass of the new heavy particle or the energy scale associated with new physics effects
C. Brogingers et al. [New Physics Working Group Collaboration]

G. Brooijmans et al. [*New Physics Working Group Collaboration*] *arXiv:1005.1229 [hep-ph]*

SUMMARY & OUTLOOK

- \Box The most striking features of LHC \rightarrow High multiplicity processes !
- □ Increased energy and luminosity, the immense amount of available phase space
 - \rightarrow Final states with several hard jets
- □ These events hide or strongly modify all possible signals of new physics
- □ Being able to predict their features is therefore essential
- □ A theoretical accuracy at least at NLO is demanded
- □ Obstacle \rightarrow existence of several hard scales
- □ Better understanding of the scale choice that describes high p_T region correctly
- Dynamic scales that depend on the event structure could help in some cases
- □ Remarkable development in NLO calculations driven by the LHC needs
- □ $2 \rightarrow 4(5)$ processes are currently scrutinized @ NLO
 - * ttbb, ttjj, WWbb, WWjj, Wjjj, Zjjj, jjjj, bbbb, tttt, ... (HELAC-NLO group)
 - ✤ Wjjjj, Zjjjj

□ Four top final states at NLO \rightarrow Constraining BSM Physics at the LHC