

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Top-Quark Mass Measurement in All-Jets Final States (TOP-11-017)

Martijn Gosselink, Peter Schleper, <u>Eike Schlieckau</u>, Markus Seidel, Hartmut Stadie - Universität Hamburg -

6th Annual Terascale Alliance Workshop

4. December 2012

Benefits, Challenges and Analyses

- Benefits
 - Large branching ratio
 - No neutrino \rightarrow no MET
 - Full kinematics available

- Challenges
 - Multi-jet background
 - Combinatorial background
 - Uncertainty from JES

- Presented analysis:
 - TOP-11-017: Top-quark mass with all-jets final states

Data and Simulation

Collision data

- 3.54 fb⁻¹ pp collisions @ $\sqrt{s} = 7$ TeV (CMSSW 4.2)
- Prescale corrected luminosity as prescaled triggers were necessary at the end of 2011 data taking

Simulation

- Madgraph tt sample with 9 masses and 3 JES (0.96, 1.00, 1.04)
- Applied corrections to match data:
 - PU weighting
 - B-Tag scale factors
 - Jet energy resolution
 - Trigger efficiency scaling

Event Selection

4

4. December 2012

Background Modeling

- Background for mass estimated using event mixing
 - Using all events after b-tagging requirement
 - Expected tt contamination: 20%
 - All jets in mixed events originate from different events
 - Uncertainty for modeling:
 - Compare to events mixed from tt simulation only

Validation Plots

4. December 2012

Eike Schlieckau - Universität Hamburg

Plots

Eike Schlieckau - Universität Hamburg

4. December 2012

7

Ideogram Method

Probability for a single event (only best permutation)

$$\mathcal{L}(\text{event}|\mathsf{m}_{t}, \text{JES}) = P(m_{t}^{fit}, m_{W}^{reco}|\mathsf{m}_{t}, \text{JES}) = f_{\text{sig}} \cdot \Sigma_{j} f_{j} P_{j}(m_{t}^{fit}|\mathsf{m}_{t}, \text{JES}) \cdot P_{j}(m_{W}^{reco}|\mathsf{m}_{t}, \text{JES}) + (1 - f_{\text{sig}}) \cdot P_{\text{bkg}}(m_{t}^{fit}) \cdot P_{\text{bkg}}(m_{W}^{reco}),$$

- Most likely m_t and JES
 - $\mathcal{L}(m_t, JES|sample) \sim \Pi_{events} \mathcal{L}(event|m_t, JES)^{W_{event}}$

4. December 2012

Eike Schlieckau - Universität Hamburg

Likelihoods on data

1D: $\mathcal{L}(m_t, JES=1|sample)$

9

CMS Preliminary, 3.54 fb⁻¹, √s=7 TeV CMS Preliminary, 3.54 fb⁻¹, √s=7 TeV 25 $-2 \Delta \ln(L)$ თ1.02 Щ 18 1.01 16 20 14 12 15 10 0.99 10 8 0.98 6 5 4 0.97 2 -stat 0 0 172 174 176 172 174 176 178 m_t [GeV] m_t [GeV]

2D: $\mathcal{L}(m_t, JES|sample)$

Eike Schlieckau - Universität Hamburg 4. December 2012

Uncertainties

• $\delta = \max(\delta^{up}, \delta^{down}, \sigma_s)$			
	1-D analysis	2-D analysis	
	$\delta_{m_{\rm t}}$ (GeV)	δ_{m_t} (GeV)	$\delta_{ m JES}$
Fit calibration	0.13	0.14	0.001
Jet energy scale	0.97 ± 0.06	0.09 ± 0.10	0.002 ± 0.001
b-JES	0.49 ± 0.06	0.52 ± 0.10	0.001 ± 0.001
Jet energy resolution	0.15 ± 0.06	0.13 ± 0.10	0.003 ± 0.001
b tagging	0.05 ± 0.06	0.04 ± 0.10	0.001 ± 0.001
Trigger	0.24 ± 0.06	0.26 ± 0.10	0.006 ± 0.001
Pileup	0.05 ± 0.06	0.09 ± 0.10	0.001 ± 0.001
Parton distribution functions	0.03 ± 0.06	0.07 ± 0.10	0.001 ± 0.001
Q^2 scale	0.08 ± 0.22	0.31 ± 0.34	0.005 ± 0.003
ME-PS matching threshold	0.24 ± 0.22	0.29 ± 0.34	$0.001 \pm \textbf{0.003}$
Underlying event	0.32 ± 0.15	0.88 ± 0.26	0.007 ± 0.002
Color reconnection effects	0.04 ± 0.15	0.58 ± 0.25	0.006 ± 0.002
Non-t ī background	0.20 ± 0.06	0.62 ± 0.10	0.008 ± 0.001
Total	1.25	1.46	0.015

Eike Schlieckau - Universität Hamburg

4. December 2012

Top-Quark Mass

Measured top-quark mass in all-jets final states:

- 2D measurement incl. JES fit:
 - 174.28 ± 1.00 ± 1.46 GeV (m_t ± stat.+JES ± syst.)
 0.991 ± 0.008 ± 0.015
 (JES ± stat. ± syst.)

Eike Schlieckau - Universität Hamburg

Back Up

Uncertainty Sources

- Fit calibration:
 - Statistical uncertainty on calibration fit
- Jet energy scale:
 - Scale jet energies $\pm 1\sigma_{overall}$
- b-JES:
 - $^\circ$ Scale b-jet energies $\pm 1\sigma_{\text{flavor}}$
- JER:
 - $^\circ$ Scale jet energy resolution ±1 σ
- b-tagging:
 - Vary CSVT working point so that efficiency changes by ± 3%
- Trigger:
 - Vary 4th, 5th and 6th p_t threshold up by 2 GeV
- Pileup:
 - Shift average number of PU events ±5%
- Parton distribution functions:
 - Uncertainty on CTEQ 6.5 PDF
- Q² scale, ME-PS matching threshold:
 - Dedicated MC samples, varied by factors 0.5 and 2
- Underlying event, color reconnection effects:
 - Dedicated MC samples (P11-FastSim vs. P11TeV-FastSim & P11mpiHi-FastSim, P11 vs. P11noCR)
- Non- $t\bar{t}$ background:
 - Vary signal fraction from 44% to 64%
 - Vary background model from data (20% tt contamination) to tt MC (100% tt contamination)

Eike Schlieckau - Universität Hamburg

4. December 2012

Comparison

Eike Schlieckau - Universität Hamburg

4. December 2012

14

Eike Schlieckau - Universität Hamburg 4. D

Eike Schlieckau - Universität Hamburg 4. December 2012

Templates I

- Distinguish 3 different types of permutations (found via jet-parton matching on MC)
 - Correct: 27.9%
 - Wrong: 22.6% (mainly missing a jet)
 - Unmatched: 49.4% (using unambiguousOnly algorithm)
- Weight events by $P(\chi^2)$ to increase significance
 - Correct: 30.1%
 - Wrong: 24.5%
 - Unmatched: 45.4%
- Functions used:
 - Voigtian for m_t correct permutations
 - Landau+Gaussian (with common mean) for remaining m_t
 - Asymmetric Gaussian for mean m_w

Templates II

4. December 2012

Eike Schlieckau - Universität Hamburg

Templates III

4. December 2012

Eike Schlieckau - Universität Hamburg

Templates IV

- Parameterization of background:
 - Gamma + Landau for m_t
 - Asymmetric Gaussian for mean m_w

