Calorimetry for a Linear Collider

> introduction

- > electromagnetic calorimeters
- > hadronic calorimeters
 - analog hadronic calorimeter

Katja Krüger (DESY)

6th Annual Helmholtz Alliance Workshop on "Physics at the Terascale"

DESY, Hamburg, 3-5 December 2012

Introduction: Jet reconstruction at a Linear Collider

- > goal: want to distinguish $Z \rightarrow jet jet from W \rightarrow jet jet$
- > requires σ(E)/E ≈ 0.3 / √E
- can be reached by particle flow algorithms (PFA)
 - for each particle within a jet the subdetector with optimal resolution is used
 - need to avoid double counting
- > need an imaging calorimeter!
- requirements for the calorimeter:
 - reconstruction of photons: separation ECAL/HCAL
 - highly granular
 - calorimeter has to be within magnet coil: very compact

CALICE: Calorimeters for Particle Flow Algorithms

Silicon ECAL

- > working principle tested in 2006-2010
- test of 6-layer prototype of integrated design tested in electron beam at DESY in Summer 2012

calibration data

256 pixels, 9*9 cm²

electron showers DESY testbeam 2012 result Chip4 Channel 62 hit 1397 Mean 389 120 RMS 23.73 χ^2 / ndf 177.6 / 152 Constant 21.79 ± 1.33 100 MPV 379.8 ± 0.3 4.324 ± 0.241 Sigma 260 280 300 320 340 360 380 400 420 440 uADC High Gair

Scintillator ECAL

- > working principle tested in 2008-2009
- electronics board: built at DESY, variant of analog HCAL board
- first test of one unit of integrated design tested in electron beam at DESY in October 2012
 - calibration data
 - electron showers

Analog HCAL

Physics prototype (proof of principle):

scintillator tiles of 3*3 to 12*12 cm², read out by Silicon Photomultipliers (SiPMs)

38 active layers

2006-2009: tests with Steel absorber

2010-2011: tests with Tungsten absorber

Semi-Digital HCAL

Resistive Plate Chambers, 1*1 cm² pads $\overset{\text{fig}}{\times}$

2-bit (semi-digital) \rightarrow 3 thresholds digitization embedded into calorimeter

power pulsing

48 layers

2012: tests with Steel absorber

Digital HCAL

Resistive Plate Chambers, 1*1 cm² pads

1 – bit (digital) digitization embedded into calorimeter

54 active layers

2010-2011: tests with Steel absorber

2012: tests with Tungsten absorber

Response (Steel absorber)

non-linear response to both e± and hadrons

deviations from linearity due to finite readout pad size

can be improved by calibration or software compensation

linear response to hadrons at the <1% level

under-compensating: e/h ~ 1.2

Resolutions (Steel absorber)

Software Compensation: apply different weights to 'hadronic' or 'electromagnetic' subshowers

→ large improvement in stochastic term: $58\%/\sqrt{E} \rightarrow 45\%/\sqrt{E}$

Measurements using either 1 or 3 thresholds

→ improvement at
higher energies with
3 thresholds

corrected for non-linearity

without and with containment cut

 \rightarrow stochastic term: 55%/ \sqrt{E}

not corrected for non-linearity

Analog HCAL: Towards an Engineering Prototype

- > 3*3*0.3 cm³ tiles
- > fully integrated electronics, power pulsing capability
- > 1 layer with 72*72 cm² active area, 576 channels:
 - calibrated in DESY testbeam in 2012
 - tested in CERN π testbeam in 2012

The AHCAL in CALICE

- DESY: steel structures, electronics and integration, test beam support, software, project management
- Hamburg: SiPMs and tile optimisation, test beam and commissioning w/ DESY
- Heidelberg: high gain ASICs, SiPM mass tests and characterisation
- MPI Munich: SiPM development, tile optimisation, cassettes, tungsten timing
- Wuppertal: embedded LED electronics and test stands
- Mainz: DAQ central components and AHCAL data concentrator
- LAL Orsay: SPIROC ASICs
- ITEP: tiles and SiPMs, test bench characterisation
- CERN: tungsten absorber, testbeam and Geant4 support
- Dubna: power supplies and distribution
- Prague: fibre based LED system
- NIU: alternative SiPM coupling, DAQ interface
- Bergen: calibration studies

Analog HCAL: LED calibration system

used to determine gain from single photon spectra:

- > light coupled directly into tile,
 - 1 integrated LED per channel
 - implemented in current detector design
 - developed by Uni Wuppertal
- light coupled into tile by notched fiber
 - tests in lab ongoing

Data collected in Cern testbeam

collected data sets:

- pions at 50 GeV
- > pions at 180 GeV
- > muons at 180 GeV for calibration

First look into CERN data

- use muon data to check that gain equalization with LED data worked:
- > added spectra of 36 tiles read out by 1 ASIC
- peak from MIPs and noise tail nicely visible, so all channels are similar
- MIP peaks for different ASICs have same position
- → equalization worked \square

Goals for Analog HCAL testbeam at CERN

System test of one-layer prototype

→ successful I

Study time structure of hadron showers

- differences in the time development of showers between hadron shower models
- differences especially in the shower tail
- ➔ analysis started

T3B: Measurements of hadron shower timing

- > dedicated measurement of shower timings:
 - 1 row of 15 scintillator pads or RPC with pads
 - downstream of steel or tungsten HCAL stack
 - developed by MPI München

comparison to shower models: some models give reasonable description at all radii

average 60 GeV shower in 4D

Summary & Outlook

- very successful testbeam season 2012 for all detector concepts
 - DESY testbeam crucial in many areas
- working principle demonstrated for all concepts, on the way to fully integrated prototypes for LC detectors
 - analog HCAL: well established, simulation validated in great detail
 - semi-digital and digital HCAL: operation established, analysis started
 - superior resolution of analog HCAL at large energies
- > plans for 2013:
 - analysis of data collected in 2012
 - next generation prototype of analog HCAL
 - further beam tests at DESY for ECALs and analog HCAL

Backup

Response with Tungsten absorber

5 mm scintillator + 10 mm W \rightarrow Compensation : e/h ~1

non-linear response for electrons and hadrons

 $e/h \sim 0.9 - 0.5$ \rightarrow over-compensating \rightarrow need smaller readout pads

