

O. Hindrichs, F. Raupach On behalf of the CMS Collaboration

RWTH Aachen 1. Physikalisches Institut B

Hamburg "Physics at the Terascale" 04.12.2012

Content

- Photon ID efficiency using FSR
- Measurement of $Z\gamma
 ightarrow \mu^+\mu^-\gamma$ cross section
- Measurement of $Z\gamma
 ightarrow e^+e^-\gamma$ cross section
- Exclusion of anomalous $ZZ\gamma$ -couplings

Motivation

- Standard model $U(1) \times SU(2)$ gauge invariance fixes the couplings of gauge bosons, $\Rightarrow ZZ\gamma$ - and $\gamma\gamma Z$ -vertex not allowed.
- Measured photons radiated by incoming quarks (ISR) and outgoing muons (FSR) which can be kinematically separated.
- An enhancement (especially of high *E_t*-photons) would mean an anomalous coupling beyond the standard model.

Event Selection

Luminosity: 5 fb⁻¹(7 TeV), 12 fb⁻¹(8 TeV) **Muons/Electrons**

- Opp. charged leptons
- $P_t > 20 \, {
 m GeV}$
- |η| < 2.4
- *M*_{//} >50 GeV

Photons

- $|\eta_{sc}| < 2.4$
- $E_t > 15 \, {
 m GeV}$
- ΔR(I, γ) > 0.7

Photon ID

- $E_{had}/E_{em} < 0.05$
- No Pixel Seed
- $I_{track} < 5 \, \text{GeV}$

- barrel: $I_{ECAL} < 10 \text{ GeV}$, endcap: $I_{ECAL} < 5 \text{ GeV}$
- barrel: $I_{HCAL} < 10 \text{ GeV}$, endcap: $I_{HCAL} < 5 \text{ GeV}$
- No jet with $P_t(jet) > 2P_t(\gamma)$ in $\Delta R < 0.5$

FSR $\mu\mu\gamma$ Distributions

FSR selection: $\begin{array}{l} \Delta R(\mu,\gamma) < 1.2 \\ 30 \; \mathrm{GeV} < M_{\mathrm{II}} < 80 \; \mathrm{GeV} \\ \text{-Clean sample to study photon efficiency.} \\ \text{-Will be used as template for signal photons.} \end{array}$

Photon ID efficiency using FSR I

- $M_{\mu\mu\gamma}$ distribution shows Z-Peak which can be used for Tag&Probe
- Tag: dimuon system, $M_{\mu\mu} < 80 \, {
 m GeV}$
- Probe: loose photon object: $\Delta R_{min}(\mu, \gamma) > 0.25$

Fit data → Signal: Breit-Wigner * Crystal Ball function BKG: LogNormal distribution

Fit MC \rightarrow Number of MC truth can be reconstructed.

Photon ID efficiency using FSR II

Only small differences between MC and Data observed. Used as p_t -dependet correction factors.

Photon ID efficiency using Electrons

FSR can not be used for high p_t -photons. Electrons are similar except for pixel seed veto. \rightarrow Data and MC are compatible within a few percent.

Very good agreement in high p_t region. Difference less than 1%.

Otto Hindrichs (RWTH 1B)

$\mu\mu\gamma$ Signal Distributions $\Delta R(\mu, \gamma) > 0.7$

$ee\gamma$ Signal Distributions $\Delta R(e, \gamma) > 0.7$

Otto Hindrichs (RWTH 1B)

Zγ

Signal Extraction

- In contrast to FSR strong contamination of photons from π^0 and jet fragmentation.
- $\sigma_{i\eta i\eta}$ -templates (width of photon cluster in η -direction) to extract signal.
- Signal: from data FSR $0.2(0.4) < \Delta R(\mu(e), \gamma) < 1.2$. -With FSR from electron and muon separately \rightarrow difference < 1%. -Varying $\Delta R(I, \gamma) < 1.0$, $\Delta R(I, \gamma) < 1.5 \rightarrow$ difference < 1%.
- BKG: lower and upper cut of track isolation are selected in a way that MC-BKG and MC-QCD agree in σ_{inin}-shape. Same cut used to extract BKG-Template from jet-data.

04.12.2012

11 / 19

Background $\sigma_{i\eta i\eta}$ -Template

Differences in $\sigma_{i\eta i\eta}$ between MC and Data don't allow direct use of MC templates.

- QCD events with at least two hadronic jets and a photon are selected.
- These photons should fulfill the whole ID except for I_{TRK}.
- The upper and lower threshold of I_{TRK} are varied and the signal fraction extracted.
- Select those regions in I_{TRK}-plane where the σ_{iηiη}-shape is consistant with that of photons from QCD-MC.
- This procedure is done for every *p*_t-bin and for barrel and endcap region.

Cross Section 7 TeV

Cross sections phase space:

 $\Delta R(I, \gamma) > 0.7, M_{||} > 50 \text{ GeV}$ ee γ : 5340 \pm 90(stat.) \pm 310(sys.) \pm 120(lumi.) fb $\mu\mu\gamma$: 5830 \pm 80(stat.) \pm 330(sys.) \pm 128(lumi.) fb MCFM (NLO): 5930 \pm 330 fb Uncertainties: -Lepton efficiency: 2%

- -Photon efficiency: 5%
- -Luminosity: 2.2%
- -Template method bin dependent: 5-20%

Cross section 8 TeV

Cross Sections phase space:

 $\Delta R(l, \gamma) > 0.7, M_{ll} > 50 \text{ GeV}$ $ee\gamma: 6410 \pm 70(stat.) \pm 360(sys.) \pm 280(lumi.) \text{ fb}$ $\mu\mu\gamma: 6630 \pm 60(stat.) \pm 370(sys.) \pm 290(lumi.) \text{ fb}$ MCFM (NLO): 6940 \pm 380 fb Uncertainties: -Lepton efficiency: 2%

- -Photon efficiency: 5%
- -Luminosity: 4.4%
- -Template method bin dependent: 5-20%

Anomalous Gauge Couplings I

$$\begin{split} \Gamma^{\alpha\beta\mu} &= \frac{P^2 - q_1^2}{m_z^2} \{ h_1(q_2^\mu g^{\alpha\beta} - q_2^\alpha g^{\mu\beta}) + h_2 \frac{P^\alpha}{m_Z^2} ((P \cdot q_2) g^{\mu\beta} - q_2^\mu P^\beta) \\ &+ h_3 \epsilon^{\mu\alpha\beta\rho} q_{2\rho} + h_4 \frac{P^\alpha}{m_Z^2} \epsilon^{\mu\beta\rho\sigma} P_\rho q_{2\sigma} \} \end{split}$$

- Most general form of vertex. P incoming Z/γ, q₁ outgoing Z, q₂ outgoing γ. [arXiv:hep-ph/9710416]
- Four new Parameters h_i ; h_1 , h_2 CP-violating set to zero.
- Scale dependent to avoid unitarity violation h_i(s). All values given at Z mass.

$$\begin{aligned} |h_3| &< \frac{\left(\frac{2}{3}n\right)^n}{\left(\frac{2}{3}n-1\right)^{n-3/2}} \frac{0.151 \, TeV^3}{\Lambda^3}; n = 3, \Lambda = 1.5 \, TeV, h_3 < 0.3\\ |h_4| &< \frac{\left(\frac{2}{5}n\right)^n}{\left(\frac{2}{5}n-1\right)^{n-5/2}} \frac{2.5 \times 10^{-3} \, TeV^5}{\Lambda^5}; n = 3, \Lambda = 1.5 \, TeV, h_4 < 0.001 \end{aligned}$$

Otto Hindrichs (RWTH 1B)

Anomalous Gauge Couplings II

BKG: LogNormal-Fit to BKG from Template-Method

SIG: Sherpa Generator (Fast SIM)

Anomalous Gauge Couplings Result

Otto Hindrichs (RWTH 1B)

17 / 19

Anomalous Gauge Couplings Combined Result

FSR

Clean sample of photon with simple kinematic cuts:

- Photon reconstruction efficiency.
- Template for Signal.

ISR

- Large number of fake photons but data driven templates for $\sigma_{i\eta i\eta}$ available.
- Cross sections are in good agreement with MC prediction.
- Exclusion of anomalous couplings are within expectations.

BACK UP