

Analysis of Z(\rightarrow $\mu\mu$)+Jet Events and Jet Energy Calibration in CMS

6th Annual Helmholtz Alliance Workshop "Physics at the Terascale" | DESY Hamburg | 04/12/12

Dominik Haitz • CMS Collaboration

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (EKP) · FAKULTÄT FÜR PHYSIK

www.kit.edu

Introduction & Motivation

1. <u>Analysis of $Z(\rightarrow \mu\mu)$ +Jet Events</u>

An interesting topology and well suited for calibration purposes

2. Jet Energy Calibration in CMS

A well-described *jet energy scale* is important for many analyses

 Deriving Absolute Residual Corrections with Z(→μμ)+Jet Events Combining both of the above

Topology of Z($\rightarrow \mu\mu$) Events

 <u>Drell-Yan process</u>: quark-antiquark annihilation produces a virtual photon / Z decaying in two leptons

 <u>Clear signature</u> of the outgoing leptons

 The design of the CMS detector allows especially <u>precise muon</u> <u>measurement</u>

Topology of Z($\rightarrow \mu\mu$)+Jet Events

 An <u>additional outgoing parton</u>, balanced to the Z/photon, hadronizes into a <u>particle jet</u>

The jet response is the ratio between the measured and the 'true' jet energy

The initial <u>transverse momentum</u> p_T of the colliding partons is zero on average, its <u>conservation</u> can be used for calibration

Jet Energy Calibration in CMS

Factorized jet energy correction approach:

- 1) Remove *pile-up effects* and *detector noise*
 - \rightarrow derived from data/MC and scaled to MC-Truth
- **2)** Correct for *different* n / p_T regions

 \rightarrow derived from MC-Truth

- 3) Correct for residual data/MC difference (applied on data only)
 - \rightarrow relative: derived from dijet balancing
 - \rightarrow absolute: derived from Z/photon+jet balancing

6/10 04/12/12

Increased Pile-up in 2012

- <u>~70% increase</u> in number of primary vertices (compared to 2011) due to higher luminosity
- Two complementary methods to deal with pile-up:
 - <u>Charged Hadron Subtraction</u> (CHS)
 Charged hadrons stemming from pile-upvertices are *ignored by the jet algorithm*
 - Pile-up jet energy correction

Two key quantities for calculation:

• *jet area* A_i (determined from the y- ϕ extent of artificially added,

infinitely soft 'dust' particles clustered in the jet)

• p_{τ} -density ρ (defined on an event-by-event basis as the median of

the $p_{T,i}$ / A_i distribution for k_T (R=0.6)-jets)

Event Selection

- An average event contains: ~50 Jets, ~12 reconstructed primary vertices, lots of low-p_τ pile-up jets and detector noise
- How to obtain a 'clean' $Z(\rightarrow \mu\mu)$ +jet sample?
 - Kinematic cuts on the muons and the reconstructed Z
 - Kinematic cuts on the leading jet
 - Topological cuts
 - Second jet cut $p_T^{Second Jet} / p_T^Z < 0.2$
 - **Back-to-back cut** $|\Delta \phi (Z, \text{Leading Jet}) \pi | < 0.34$

 \rightarrow Only events are selected where the <u>Z is balanced by exactly one jet</u>!

Absolute Residual Correction

- Combination of the jet response derived from
 - Z(→ µµ)+jet
 - Z(→ee)+jet
 - photon+jet

- Average data/MC ratio:
 r = 0.983 +- 0.004
 - → Final correction factor on data:
 c = 1.017

Combined Uncertainties

- Very small uncertainties for $|\eta| < 2.4$, $p_T^{\text{Jet}} > 100 \text{ GeV}$
- High pile-up uncertainties for low-p_⊤ jets

Conclusion

- $Z(\rightarrow \mu\mu)$ +jet topology is <u>well understood</u>
- CMS successfully uses <u>factorized jet energy corrections</u>
 - Advanced <u>MC-Truth-based</u> techniques and robust <u>data-driven</u> methods are combined
- Jet energy uncertainty as small as 1% in the central detector region

<u>Further improvements</u> down to the per mill level possible

Approach and methods: Recent results: <u>JINST 6 (2011) P11002</u> <u>DP 2012/012</u>

10/10 04/12/12

Backup Slides

Two Methods to Measure the Jet Response

 \mathbf{p}_{τ} balance

MPF

(Missing E_{τ} Projection Method)

$$R_{MPF} = 1 + \frac{\vec{E}_T^{miss} \cdot \vec{p}_T^Z}{(p_T^Z)^2}$$

Jet Composition

Pileup-Reweighting

Pile-up and Offset Correction

Pileup composition

Correction

