Higgs – Experimental Status and Perspectives

Kerstin Tackmann (DESY)

6th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

Kerstin Tackmann (DESY)

Higgs - Experimental Status and Perspectives

The News of this Summer

- Discovery of a new particle consistent with SM Higgs by ATLAS and CMS
- Overview of ATLAS and CMS results

Higgs Boson Production at the LHC

Higgs Boson Production Processes

Gluon fusion

Dominant process at Tevatron and LHC Higgs dominantly produced with small p_T NLO correction increase LO cross section by 60 - 90%, NNLO corrections add another 30%

Vector boson fusion (VBF)

W mode dominates Two forward jets with large $\Delta\eta$

Associated production

Higgs at larger p_T recoiling against W or Z (reconstructed in lepton decay channels)

Higgs Boson Decays

$H ightarrow \gamma \gamma$

Rare decay, but distinct signal

H ightarrow au au

Enhanced in MSSM, also contributes to SM search

$H ightarrow b ar{b}$

Main search channel at LEP and Tevatron, important to study Higgs properties

$H \rightarrow WW$

Large signal yield

 $H \rightarrow ZZ$ Very clean signal if both $Z \rightarrow \ell \ell$

Production Cross Sections at Hadron Colliders

Process	Cross section (nb) at 14 TeV CM energy	Production rates (Hz) at L=10 ³⁴ cm ⁻² s ⁻²
Inelastic	10 ⁸	10 ⁹
bb	5×10 ⁵	5×10 ⁶
$W \rightarrow \ell \nu$	15	150
$Z \to \ell \ell$	2	20
tī	1	10
Z' (1 TeV)	0.05	0.5
<i>ĝ</i> ĝ (1 TeV)	0.05	0.5
H (120 GeV)	0.04	0.4
H (180 GeV)	0.02	0.2

Many orders of magnitude between Higgs/New Physics and QCD backgrounds

Luminosity and Running Conditions

- ATLAS and CMS each collected $\sim 5~{\rm fb}^{-1}$ @ 7 TeV and $\sim 20~{\rm fb}^{-1}$ @ 8 TeV
- Results shown here based on full 7 TeV data and up to 13 fb^{-1} of 8 TeV data
- Taken with 50 ns bunch spacing and up to almost 35 interactions/bunch crossing
- Large rise in instantaneous luminosity from $2 imes 10^{32}
 ightarrow 7 imes 10^{33}$
- Large luminosity comes at the cost of high pileup (→ many proton-proton collisions overlaid in the detector)

$H \rightarrow \gamma \gamma$: The Rare-But-Clean

Signature

- 2 energetic isolated photons
- Small branching ratio, but good signal yield
 - * ATLAS: Expect ~ 190 signal events after all selections for $m_H = 125 \text{ GeV}$ in current data
- Good mass resolution → clear peak over smooth background
- Main backgrounds
 - \star irreducible $(\gamma\gamma)$ (30 pb)
 - ***** reducible (γ jet) (200 pb)
 - \star reducible (jetjet) (500 μ b)
- \rightarrow Need powerful γ /jet separation $(\mathcal{O}(10^4))$

$H \rightarrow \gamma \gamma$: Mass Reconstruction

$$m_{\gamma\gamma}^2 = 2\underline{E_1}\underline{E_2}(1-\cos\alpha)$$

$Z ightarrow e^+e^-$ used to

- derive energy calibration and resolution corrections
- determine trigger, identification and isolation efficiencies

Photon angle measurement to improve mass resolution

- ATLAS Longitudinal segmentation of calorimeter, conversion vertices, tracking information
- CMS Tracking information, *p_T* balance between tracks and photons, conversion vertices

Angular contribution to mass resolution negligible

$H \rightarrow \gamma \gamma$: Event Categories

Separating events according to resolution and S/B increases sensitivity

- Separate out events with VBF-like signature: two jets with large angular separation
 - ⋆ Dijet category contains ~70-80% VBF events and has efficiency of ~25-30% for VBF events (ATLAS)

Classify remaining events

- ATLAS Photon direction, photon conversion status, diphoton p_{Tt}
- CMS Boosted decision tree based on photon momentum and direction, diphoton opening angle, mass resolution, photon identification

di-photon MVA output

$H \rightarrow \gamma \gamma$: 2-Jets Candidate

Kerstin Tackmann (DESY)

$H ightarrow \gamma\gamma$: Mass Spectra

- Choice of background parametrization adjusted per category to limit size of potential biases to <20% of fitted signal yield uncertainty
- Chosen parametrizations: polynomials of different order, exponential (ATLAS), exponential of second order polynomial (ATLAS)

$H ightarrow \gamma \gamma$: Compatibility with Background

ATLAS

CMS

Observed significance 4.5σ Expected significance 2.4σ at $126.5 \, {\rm GeV}$ Observed significance 4.1σ Expected significance 2.8σ at $125 \, {\rm GeV}$

SM Higgs boson excluded on either side of the excess

$H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell$: The Golden

Signature

- 2 pairs of oppositely charged, same flavor leptons (down to 5 GeV)
- One or both pairs compatible with $Z
 ightarrow \ell^+ \ell^-$
- Very clean channel, with excellent mass resolution $\sigma_{m_{4\ell}} < 2 \,\mathrm{GeV} \,(4\mu)$ to $\sim 2.5 \,\mathrm{GeV} \,(4e)$ (at 130 GeV)
- Important: good lepton (e and μ) reconstruction and identification down to low momenta

$H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell$: Background Estimation

$\ell\ell + \mu\mu$

- No isolation and impact parameter significance requirement on subleading μ pair
- $Zb\bar{b}$ and $t\bar{t}$ clearly separated, components determined by fit
- Cross check with $e^{\pm}\mu^{\mp}\mu^{\pm}\mu^{\mp}$ (for $tar{t}$)

 $\ell\ell + ee$ Main contribution: *Z*+jets (fakes, γ conversions, heavy flavor)

- Transition radiation
- Hits in innermost Pixel layer
- Energy fraction in first calo layer
- Containment of shower in ϕ
- \rightarrow Extract background from control regions with relaxed identification on subleading e pair and extrapolate to signal region

$H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell$: Angular Analysis @ CMS

Kinematics fully described by 2 invariant

$$\mathrm{KD} = \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}} + \mathcal{P}_{\mathrm{bkg}}} = \left[1 + \frac{\mathcal{P}_{\mathrm{bkg}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{sig}}(m_1, m_2, \vec{\Omega} | m_{4\ell})} \right]^{-1}$$
$$\vec{\Omega} = J \theta^* \Phi, \theta, \phi, \phi$$

+4ė

+ 4u

+ 2e2μ

0.8

0.6

0.4

0.2

$H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell$: Spectra and Event Counts

Expected signal/background and observed events in $m_{\rm H}$ = 125 \pm 5 GeV				
	Signal	ZZ ^(*)	Z+jets	Observed
4μ	2.1 ± 0.3	1.12 ± 0.05	0.13 ± 0.04	6
2e2µ/2µ2e	2.3 ± 0.3	0.80 ± 0.05	1.3 ± 0.2	5
4e	0.9 ± 0.1	0.44 ± 0.04	1.1 ± 0.2	2
Total	5.3 ± 0.8	2.4 ± 0.1	2.5 ± 0.4	13

Kerstin Tackmann (DESY)

$H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$ Candidate

Kerstin Tackmann (DESY)

$H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell$: Compatibility with Bkgd

Observed local significance at $125\,{
m GeV}$: 3.6σ

Exptected local significance at $125~{ m GeV}$: 2.7σ

Observed local significance at $126~{
m GeV}$: 4.5σ

$H \to WW \to \ell \nu \ell \nu$: The Abundant

Most sensitive channel in a wide mass range $m_H \sim (130 - 180) \, {\rm GeV}$

Signature

- 2 oppositely charged leptons
- Large missing E_T

- Challenge: poor mass resolution due to 2ν
 - \rightarrow Transverse mass $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{\text{miss}})^2 |\vec{p}_T^{\ell\ell} + \vec{p}_T^{\text{miss}}|^2}$
 - \star ATI AS Fit to m_T
 - \star CMS 2d shape in m_T and $m_{\ell\ell}$ for 0, 1 jets, OF leptons and counting in m_T otherwise
- Classify events by number of jets (jets matched to hard interaction primary vertex to suppress pileup)
 - \star 0 jets dominated by **WW** bkgd, sensitive to $gg \rightarrow H$
 - 1+2 jets dominated by top background
 - 2 jets selection to isolate VBF production

$H \to W W \to \ell \nu \ell \nu$: Backgrounds

Control of large backgrounds crucial: suppressed by selection and measured in data control regions

- SM WW suppressed by topological cuts $(m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_T)$. For low m_H constrained from signal free region with modified topological selection.
- W+jets suppressed by lepton selection (isolated, opposite sign). Estimated from region enriched in fake leptons.
- Drell-Yan suppressed by large E_T^{miss} , Z veto. Estimated from Z peak.
- top suppressed by *b*-jet veto and controlled by categorization into jet bins. Estimated from *b*-tagged events.

$WW \rightarrow e \nu \mu \nu$ Candidate @ ATLAS

$H \to WW \to \ell \nu \ell \nu$: Results

H o au au

Signature

- Electron and/or muon
- Hadronically reconstructed $au_{
 m had}$
- Missing E_T

Events classified by

- τ decay mode (2 leptonic, leptonic+hadronic, 2 hadronic τ)
- Jet content (0, 1, 2 jets) and kinematics

Mass reconstruction possible due to collinearity of au decay products, resolution $\mathcal{O}(15-20\%)$

Include categories targetting

- VBF production
- VH production
- Good mass resolution
 - * Boosted objects

Kerstin Tackmann (DESY)

$H \rightarrow au au$: Backgrounds and Results

Main backgrounds

- Z
 ightarrow au au shape from embedding MC au into data $Z
 ightarrow \mu \mu$ and using MC
- $Z \rightarrow \ell \ell$ (+ jets) from corrected MC
- QCD and W+jets same-sign events and loosened selection

 $125 \,\mathrm{GeV}$ (expected limit 1.05 × SM)

ATLAS Observed limit $1.9 \times SM$ at 125 GeV (expected limit $1.1 \times SM$)

$H \rightarrow b \overline{b}$: The Unexpected?

- ullet $H o bar{b}$ drowned in QCD backgrounds
- Feasible for Higgs produced in association with $W \to \ell \nu, Z \to \ell \ell, Z \to \nu \nu$
- Bins in $p_T^{W,Z}$ to exploit boosted topology

Signature

- 2 b-tagged jets
- Lepton(s) $(W
 ightarrow \ell
 u, Z
 ightarrow \ell \ell)$

• Missing
$$E_T \; (W o \ell
u, Z o
u
u)$$

- Shape analysis of $m_{b\bar{b}}$ CMS Boosted decision tree (20% improvement over cut-based analysis)
- Main backgrounds estimated from data $(W/Z+jets, WW, t\bar{t})$
- Use SM WZ and ZZ with $Z \to b \bar{b}$ to validate analysis

$H \rightarrow b\bar{b}$: Results

CMS 2.2 σ @ 125 GeV Expected 2.1 σ

ATLAS $1.8 \times SM @ 125 GeV$ Expected $1.9 \times SM$

120

115

vs = 7 TeV.

VH(bb), combined

Ldt = 4.7 fb

vs = 8 TeV. Ldt = 13.0 fb

125

130

m_H[GeV]

• Signal strength in subchannels as expected

ATLAS Preliminary

 $\pm 1\sigma$

+ 20

---- Observed (CLs)

······ Expected (CLs)

[9]

• Searches for $H \rightarrow b\bar{b}$ produced in association with top quarks, current sensitivity about $4 - 5 \times$ SM at 125 GeV

95% C.L. limit on σ/σ_{SM}

3

Combination: Compatibility with Background

ATLAS

Observed local significance at $126.5 \, { m GeV}$: 5.9σ

Exptected local significance at $126.5\,{ m GeV}$: 4.9σ

CMS

Observed local significance at $\sim 126\,{ m GeV}$: 6.9σ

Exptected local significance at $\sim 126\,{
m GeV}$: 7.8 σ

Now that we saw something, does it look like a Higgs?

Looking at the Signal Strength

Signal strength in the different decay channels

$H \rightarrow ZZ, H \rightarrow \gamma\gamma$ and $H \rightarrow WW$ are the most sensitive In agreement with SM within present uncertainties

Looking at Production Modes

- Sensitivity to production modes in $H \rightarrow \gamma \gamma$ from separation into categories
- gg
 ightarrow H and $t\bar{t}H$ scale with $t\bar{t}H$ coupling
- VBF and VH scale with *WWH/ZZH* coupling

Consistent with SM within $\sim 1.5\sigma$

Separate Higgs couplings into vectorial and fermionic couplings

Looking at the Spin/CP

- Angular distributions in $H \rightarrow ZZ \rightarrow 4\ell$ sensitive to spin and CP
- Compatibility with certain hypothesis (here 0⁺ vs 0⁻) assessed with likelihood tests
- Separation between hypotheses $\sim 2\sigma$
- Data consistent with 0^+ (0.6 σ)
- Not very good consistency with $0^- (2.5\sigma)$

- Could also test for consistency with 2⁺
- Angular distributions in $H o \gamma\gamma$ and $H o WW o 2\ell 2
 u$ can also be used

Conclusions

- Both ATLAS and CMS observe a narrow resonance around $125 126 \, \mathrm{GeV}$ in the SM Higgs searches
- Main contributions from high-resolution channels $H \to \gamma \gamma$ and $H \to ZZ \to 4\ell$ and from $H \to WW \to \ell \nu \ell \nu$
- Fermionic decays $H \to b\bar{b}$ and $H \to \tau\tau$ consistent with SM Higgs, but also with background fluctuation.
- (So far) observations are consistent with SM Higgs boson
- Dedicated searches in high-mass region $(H \rightarrow ZZ \rightarrow \ell \ell \nu \nu, H \rightarrow ZZ \rightarrow \ell \ell q \bar{q}, H \rightarrow WW \rightarrow \ell \nu q \bar{q})$ do not see any excess and exclude SM Higgs between 273 GeV and 600 GeV

Outlook and Perspectives

Is this a (SM) Higgs?

- Better determination of couplings to different vectors and fermions
 - $\star\,$ For mass of $\sim\,125\,{\rm GeV},$ decays to both gauge bosons and heavy leptons accessible!
- Determine spin and CP
 - $\star\,$ Spin 1 already excluded from observation of $\gamma\gamma\,{\rm decay}$
 - ⋆ Possible admixture between CP even and odd
- $\rightarrow\,$ First measurements with the $7-8\,{\rm TeV}$ data, to be followed up with the $13-14\,{\rm TeV}$ data starting from 2015
 - Look for rare decay modes $(H
 ightarrow Z\gamma, H
 ightarrow \mu\mu)$
 - Measurement of trilinear Higgs coupling will need high luminosity after LHC lumi upgrade (3 ab⁻¹) or ILC

ATLAS Preliminary (Simulation)

[[15] ATL-PHYS-PUB-2012-004] $\frac{\Delta \mu}{\pi}$

	300 fb ⁻¹	3000 fb ⁻¹
κ_V	3.0% (5.6%)	1.9% (4.5%)
κ_F	8.9% (10%)	3.6% (5.9%)