MSSM Interpretations of the LHC Discovery:

Light or Heavy Higgs?

based on [1211.1955] with P. Bechtle, S.Heinemeyer, O.Stål, T. Stefaniak, G.Weiglein

Lisa Zeune

Helmholtz Alliance Workshop, Hamburg

December 4, 2012

Higgs discovery

- Higgs-like particle with mass ~ 126 GeV discovered
- Observation compatible with SM Higgs

However:

- Results show slight deviation from SM Higgs
- Many new physics explanations possible
- Observed Higgs can also be interpreted in the MSSM
 - \rightarrow Light CP-even Higgs: h
 - \rightarrow Heavy CP-even Higgs: H
- How well does the MSSM describe the signal seen by the experiments?

Higgs decay rates

• In each decay channel ATLAS and CMS give best fit signal strength $\mu = (\sigma \times BR)/(\sigma \times BR)_{SM}$

Results from July '12

New updated Higgs results have been shown at HCP

 \rightarrow Not included in our analysis yet \rightarrow See comments later!

Higgs sector of the MSSM

Two Higgs doublets

$$H_1 = \begin{pmatrix} v_1 + \frac{1}{\sqrt{2}} (\phi_1 - i\chi_1) \\ -\phi_1^- \end{pmatrix}, \quad H_2 = \begin{pmatrix} \phi_2^+ \\ v_2 + \frac{1}{\sqrt{2}} (\phi_2 + i\chi_2) \end{pmatrix}$$

5 physical Higgs bosons: 2 CP-even, 1 CP-odd, 2 charged

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{h} \end{pmatrix} = U_{\alpha} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \ \begin{pmatrix} G \\ \mathbf{A} \end{pmatrix} = U_{\beta} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \ \begin{pmatrix} G^{\pm} \\ \mathbf{H}^{\pm} \end{pmatrix} = U_{\beta} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

- Tree level: $M_h \leq M_Z$
- Large radiative corrections: $M_h \lesssim 135 \text{ GeV}$
- $\alpha \rightarrow \alpha_{\text{eff}}$ approximation beyond LO

In the MSSM the Higgs signal at 126 GeV can be the light (h) or the heavy (H) CP- even Higgs

How well can the MSSM describe the Higgs signal?

- Scanning over 7 pMSSM parameters (~10 million points)
- Standard χ^2 method:

 MSSM Higgs decay rates calculated with channel efficiencies as weights (when available)

$$\mu_{xx} = \frac{\sum_k w_k \ \sigma_k \times BR(h \to xx)}{\sum_k w_k \ \sigma_k^{SM} \times BR(h \to xx)^{SM}}$$

Results of the fit

	LHC only		LHC+Tevatron			LHC+LEO			LHC+Tevatron+LEO			
Case	χ^2/ν	$\chi^2_{ u}$	p	χ^2/ u	$\chi^2_{ u}$	p	χ^2/ u	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p
\mathbf{SM}	27.6/34	0.81	0.77	31.0/37	0.84	0.74	41.6/39	1.07	0.36	45.3/42	1.08	0.34
h	23.3/28	0.83	0.72	26.8/31	0.86	0.68	26.7/33	0.81	0.77	30.4/36	0.84	0.73
H	26.0/28	0.93	0.57	33.1/31	1.07	0.37	35.5/33	1.08	0.35	42.4/36	1.18	0.21

Naive calculation if dof: $\nu = n_{\rm obs} - n_{\rm para}$

- Only collider data: SM and both MSSM interpretations similar
- Including also low energy observables (LEO): SM and heavy Higgs case become slightly worse

 \rightarrow SM because $(g_{\mu} - 2)$ differs by more than 3σ

- → H case because light charged Higgs give (too) large contributions to B physics observables
- Overall good MSSM fits (for both cases)
- No clear preference for either MSSM or SM

Light Higgs case $M_h \approx 126 \,\, {\rm GeV}$

Best fit points

Favored region – Higgs decay rates

- $R_{xx} \ (\approx \mu_{xx})$: $\sum_{i} \sigma_i^{(8 \text{ TeV})} \times \text{BR}(h \to xx)/\text{SM}$
- Favored region: ⁱ
 Enhanced γγ rate, bb and ττ rate SM-like/ slightly suppressed

Enhancing the $\gamma\gamma$ rate in the MSSM

Two mechanisms to enhance the h $\rightarrow \gamma\gamma$ rate in the MSSM

1. Light staus

- SUSY contributions to the partial width
 - → Enhancement up to 50% of $\Gamma(h \rightarrow \gamma \gamma)$

- Main contribution from light staus [1112.3336], [1205.5842]
- Implies staus with mass close to PDG bound (> 81.2 GeV)
- Small effect on other decay rates

Enhancing the $\gamma\gamma$ rate in the MSSM

- 2. Suppression of the total width
- Suppression of dominant decay mode $h \rightarrow bb$
- Reduced hbb coupling in the MSSM

$$\frac{g_{hb\bar{b}}}{g_{H_{\rm SM}b\bar{b}}} = \frac{1}{1 + \Delta_b} \left(-\frac{\sin \alpha_{\rm eff}}{\cos \beta} + \Delta_b \frac{\cos \alpha_{\rm eff}}{\sin \beta} \right)$$
Loop-induced SUSY correction

 \sqrt{a}

- Favored region has intermediate-large Δ_b corrections
- Largest bb suppression for
 - Large X_t
 - Large μ (1-3 TeV)

Favored region

- Regions of high $\gtrsim 40$ and low $\lesssim 8$ tan β disfavoured by the fit
- To get $M_h \simeq 126$ GeV:
 - Large mixing in stop sector required, $|X_t/M_{\tilde{q}_3}| > 1$
 - Stop masses down to 150 GeV possible
- Most favoured region has $m_{\tilde{t}_1} > 200$ GeV and positive X_t

Heavy Higgs case $M_H \approx 126 \,\, {\rm GeV}$

Best fit points

Heavy Higgs case

- Allowed region in parameter space limited
 - Low $M_A \rightarrow$ Other Higgs states should be accessible soon

- Additional light CP-even Higgs
- Reduced couplings to vector bosons
 → can be below LEP limit for SM Higgs

Favored region – Higgs decay rates

- Favored regions for Higgs decay rates similar to h case:
 Enhanced γγ rate, slightly suppressed bb rate
- Notable difference: ττ rate
 - H and A close in mass
 - \rightarrow Contributions added in channels with bad mass resolution
 - \rightarrow Favored region has high $\tau\tau$ rate

Higgs update at HCP

- Both ATLAS and CMS see an excess in the ττ channel
 - Signal strength ~ 0.7
- γγ channel not updated

Possible effects for our fit:

- Best fit point in h-case in good agreement with new data
- We find low impact of ττ data
 - → No big change expected from new data
- Favoured region in heavy Higgs case (probably) effected by new results
 - → Model independent cross section limits from CMS needed

Ĭ

from

Conclusions

- LHC experiments provide measurements of the decay of the new state
- Fitting the MSSM to experimental rates
 - Including also Tevatron data and low energy observables
- Viable MSSM interpretations:

Light CP - even Higgs h:

Excellent fit for the light Higgs case

Heavy CP - even Higgs H:

- Acceptable fit for heavy Higgs case (somewhat worse after including flavour data)
- Fit prefers enhancement of $h \rightarrow \gamma \gamma$ and a (small) suppression $h \rightarrow bb$
- Plan to update the fit \rightarrow Experimental input needed!

Back-up slides

Parameter ranges for MSSM fit

Random scan of 7 "pMSSM" parameters (~10 M points) (+ m_t varied in 2 σ interval)

	Min	Max	$M_{Q_{1,2}} = M_{U_{1,2}} = M_{D_{1,2}} = 1 \mathrm{TeV}$
M_A	90	1000	$M_{D_2} = M_{U_2} = M_{O_2}$
aneta	1	60	$M_L = M_E = 300 \text{GeV}$
M_{Q_3}	200	1500	$M_{L_{1,2}} = M_{L_{1,2}} = 000 { m GeV}$
A_t	$-3 M_{Q_3}$	$3 M_{Q_3}$	$\frac{ME_3}{A_1 - A_1 - A_1}$
μ	200	3000	$M_b = M_\tau = M_t$
M_{L_3}	200	1500	$M_3 = 1$ lev
M_2	200	500	NI ₁ fixed by GUT relation

3

Values used for BPO and (g-2)

Observable	Experimental value	SM value
$BR(B \to X_s \gamma)$	$(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$	$(3.08 \pm 0.22) \times 10^{-4}$
$BR(B_s \to \mu^+ \mu^-)$	$< 4.2 \times 10^{-9}$	$(3.55 \pm 0.38) \times 10^{-9}$
$BR(B_u \to \tau \nu_{\tau})$	$(1.66 \pm 0.33) \times 10^{-4}$	$(1.01 \pm 0.29) \times 10^{-4}$
δa_{μ}	$(30.2 \pm 9.0) \times 10^{-10}$	_
M_W	$(80.385 \pm 0.015) \text{ GeV}$	$(80.363 \pm 0.004) \text{ GeV}$

MSSM best fit values for LEO

		Light Higgs case			Heavy Higgs case		
Channel		μ_h	χ_h^2	Pull	μ_H	χ^2_H	Pull
LEO	$BR(B \to X_s \gamma) \times 10^4$	3.41	0.00	-0.03	4.38	2.12	1.46
LEO	$BR(B_s \to \mu^+ \mu^-) \times 10^9$	2.79	0.00	0.00	2.24	0.00	0.00
LEO	$BR(B_u \to \tau \nu_\tau) \times 10^4$	0.98	2.37	-1.54	0.80	3.78	-1.94
LEO	$\delta a_{\mu} \times 10^9$	2.58	0.24	-0.49	1.34	3.48	-1.87
LEO	M_W [GeV]	80.379	0.04	-0.19	80.383	0.00	-0.05

- Best fit points give small values for $BR(B_s^0 \to \mu^+ \mu^-)$
- Rather large χ^2 contribution from BR $(B_u \to \tau \nu_{\tau})$
 - Including new Belle result would reduce χ^2 contribution
- In the heavy Higgs case large χ^2 contribution from (g-2)
 - Could be improved by treating also slepton parameters as free fit parameters

$B_s \to \mu^{\!\!\!\!+}\!\mu^{\!\!\!\!-}$

- Branching ratio measurement from LHCb presented at HCP $BR(B_s^0 \rightarrow \mu^+\mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$ SM prediction: $3.55 \pm 0.38 \times 10^{-9}$
- MSSM fit predicts low values of $BR(B_s^0 \to \mu^+ \mu^-)$
 - Already without including ${\rm BR}(B^0_s\to\mu^+\mu^-)$ measurement/limit in χ^2 calculation

• Points predicting $b \to s\gamma$ in the right range and an enhanced $\gamma\gamma$ rate, automatically feature a suppressed $BR(B_s^0 \to \mu^+\mu^-)$ Haisch, Mahmoudi, 'arXiv:1210.7806

Lisa Zeune | MSSM Interpretations of the LHC Discovery | Helmholtz Alliance Workshop 2012 | Page 22

Heavy Higgs case

- Additional light CP-even Higgs with reduced couplings to vector bosons
 - \rightarrow Not excluded by LEP searches

New limits from MSSM Higgs boson searches

- New results given only in the m_h^{\max} scenario
- No model-independent cross section limits
- Favoured region in heavy Higgs case (probably) effected by new results
- Effects need to be investigated
 - → Experimental input missing...