

Aspects of Vector Boson Scattering at ATLAS

Institut für Kern- und Teilchenphysik, TU Dresden

Felix Socher Supervisors: Michael Kobel, Anja Vest

1

Vector Boson Scattering

- Vector Boson Scattering (VBS) contains
 - the triple gauge boson vertices
 - the quartic gauge boson vertex
 - the interaction of the Higgs boson with the gauge boson of the weak interaction

Vector Boson Scattering

- in Standard Model without a Higgs, the VBS cross section would violate unitarity
- probe for SM as well as other higgsless models
- can also be used to examine physics beyond the SM such as anomalous quartic gauge couplings (aQGCs)
- plan is to measure WW -> WW in the same sign channel
- building on that, extraction of electroweak contribution to the process and limits on aQGCs

General e

- two highly energetic jets (called tagging jets) (3,4)
- large pseudo rapidity gap between jets
- large invariant mass of dijet system
- two leptons that lie between the tagging jets (1,2)

Object Selection

Jets

- calibrated (2011 input)
- p_T > 30 GeV
- $|\eta| < 4.5$
- not LooserBad
- |JVF| > 0.5
- Overlap Removal
 - jets near electrons (0.3)
 - jets near muons (0.3)

- Electrons
 - scaled and smeared
 - author 1 or 3
 - OQ good
 - p_T > 15 GeV
 - $|\eta| < 2.47$, excluding crack region
 - tight++ (using macro)
 - |z_{0theta}| < 0.5
 - $|d_{0_sig}| < 3$
 - etcone30/pt < 0.14
 - ptcone30/pt < 0.13
 - overlap removal
 - electrons near muons (0.1)

• Muons

- scaled and smeared
- STACO
- combined + tight
- p_T > 15 GeV
- |η| < 2.5
- MCP Recommendations
- |z_{0theta}| < 0.5
- |d_{0_sig}| < 3
- etcone30/pt < 0.14
- ptcone30/pt < 0.15

CutFlow

- Baseline Selection
 - GRL
 - Pileup Reweighting
 - Detector Quality
 - MET Cleaning(0)
 - Primary Vertex
 - Trigger
 - N_Lep(2)
 - N_Jets_MinGeV(2, 30)

- Signal Regions
 - N_Leptons (according to channel)
 - Trigger Match
 - Lep2_p_T > 20 GeV
 - M_II > 20 GeV
 - Lepton same sign cut
 - MET > 40 GeV
 - Z_Window veto (ee only)
 - M_jj > 150 GeV
 - Lep_Centrality > -0.5
 - Delta_AbsEta_jj > 2.4
 - M_jj > 500 GeV

Modeling of tagging jets

Modeling of tagging jets

- · tagging jets seem sufficiently well modeled
- · most of the time there is a forward jet and a rather central jet

Central Jet Veto

- Idea: signal is characterized by colorless exchange -> no jet activity between tagging jets expected
- could a veto on additional jets help against background?
- all plots done after M_JJ > 150 GeV cut

η

Properties of Central jets

• central jets sufficiently well described by MC

Properties of Central jets

- central jet veto worsens the relative error on the measurement of ssWW EW+QCD
- · decided to drop central jet veto

anomalous Quartic Gauge Couplings

- studies done by Carsten Bittrich
- way to describe physics beyond the kinematic reach of the LHC
- effects from new physics are described by effective Lagrangian
- extension of the effective Lagrangian via terms containing additional dimension eight operators

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda_i} \mathcal{O}_i$$

• gives changed parameters:

$$c_i^{VV'} = c_{i,\rm SM}^{VV'} + g^2 \Delta c_i^{VV'}$$

Used Models

VBF@NLO

- implements a light SM Higgs boson
- anomalous gauge couplings parameterized with $\Delta c_i^{WW} = \frac{g^2 v^4 f_i}{8\Lambda^4}$
- Unitarization done via Form Factors

• WHIZARD

- Higgs Boson represented by scalar sigma-resonance with $m_H = 126 \text{ GeV}$
- Extension of Lagrangian with anomalous couplings: $\Delta c_i^{WW} = g^2 \alpha_{i+4}$
- Unitarization done via K-matrix formalism

Scenario

- Center-of-mass energy: 8 TeV
- final state: $jje^+\nu e^+\nu$
- Fiducial volume:

 $p_T(l_1) > 25 \text{ GeV}$ $p_T(l_2) > 20 \text{ GeV}$ $|\eta(l)| \in [0, 1.37] \cup [1.52, 2.47]$ $M_{ll} > 20 \text{ GeV}$ $\zeta > -0.5$ $E_{\text{T, miss}} > 40 \text{ GeV}$. $p_T(j_1) > 30 \text{ GeV}$ $p_T(j_2) > 30 \text{ GeV}$ $|\eta(j)| < 5$ $M_{jj} > 500 \text{ GeV}$ $|\eta_{jj}| > 2.4$

VBF@NLO

• Delta Phi and invariant mass of tagging jets are most sensitive variables

Whizard

- $\Delta \varphi$ of leptons and invariant mass of tagging jets are most sensitive variables

Cross section comparison

$$\alpha_{i+4} = v^4 \frac{f_i}{8\Lambda^4} = \frac{v^4}{8 (\text{TeV})^4} \tilde{f}_i \quad \text{with} \quad \tilde{f}_i = f_i \cdot \frac{\text{TeV}^4}{\Lambda^4}$$

$$\stackrel{\text{e. g.}}{\Rightarrow} \quad \alpha_4 = 0.05 \quad \stackrel{?}{\approx} \quad \tilde{f}_0 = 100$$

Comparison of dependency of cross sections on α_4 and f_0 with $\alpha_5 = f_1 = 0$ (left) or α_5 and f_1 with $\alpha_4 = f_0 = 0$ (right) for different generators. (—): VBF@NLO, (—): Whizard

Conclusion

- want to measure the VBS cross section
- after that extract electroweak contribution and set limits on aQGCs
- tagging jet kinematics seem to be well modeled by MC, data driven background estimation is on its way
- Central Jet Veto does not help with measurement of VBS cross section, seems also to be the case for the electroweak contribution extraction
- studies on generator level show that Δφ of leptons and invariant mass of the tagging jets seem to be the best distributions to separate different strengths for aQGCs
- · differences for generators are still under investigation

Thank you for your attention!

Properties of Outlier jets

Properties of Outlier jets

