

Central jets in $H \rightarrow WW^{(*)} \rightarrow lvlv + 2$ jets

Pai-hsien Jennifer Hsu

Johannes-Gutenberg Universitaet Mainz

Outline

- Introduction to VBF analysis for $H \rightarrow WW^{(*)} \rightarrow lvlv$ in ATLAS.
- Generator-level studies on central jet veto (CJV) in VBF H \rightarrow WW^(*) \rightarrow *lvlv*

Higgs Production at LHC

P. Jennifer Hsu (Mainz)

CJV Workshop December 5th 2012

Higgs Production at LHC

P. Jennifer Hsu (Mainz)

• What the Feynman diagram shows:

• What we see in the detector:

- Signal: Di-lepton (ee,e μ , $\mu\mu$) + Missing E_T (v)
 - + 2 high-Pt jets in the forward regions ("tag jets")
- Major Backgrounds:
 - Top quark pairs (ttbar)
 - WW
 - W + jets

- Signal: Di-lepton (ee,e μ , $\mu\mu$) + Missing E_T (v)
 - + 2 high-Pt jets in the forward regions ("tag jets")
- Major Backgrounds:

- Signal: Di-lepton (ee,eµ,µµ) + Missing $E_T(v)$ + 2 high-Pt jets in the forward regions ("tag jets") → tag jets are
 - well-separated in pseudorapidity η
- No color charge flow in the central region → central jet activity is suppressed.
- Can reject ttbar by
 - b-tagging (reject events with b-tagged jets)
 - Central jet veto (CJV)

- Central jets: Additional jets between the *rapidity* gap spanned by the two tag jets. $\rightarrow y_{j1} < y < y_{j2}$
- With jet Pt threshold at 20 GeV, rejecting ~50% ttbar.
- Cutting away $\sim 10\%$ H \rightarrow WW VBF signal.
- \rightarrow Generator-level study on central jets in VBF H \rightarrow WW*

* Study by Marc Geisen, student from Mainz.

- Datasets: VBF $H \rightarrow WW^* \rightarrow l\nu l\nu$ from Powheg+Pythia
- Take the following variations:

Data	Description					
nominal	standard					
ue_low	low value for the underlying event					
ue_high	high value for the underlying event					
mpioff*	underlying event switched off					
radiation_off	radiation of the tagging-jets switched off					
really_all_off	all radiations switched off					
*MPI = Multi-parton interactions						

Central jets in VBF $H \rightarrow WW$

- Datasets: VBF $H \rightarrow WW^* \rightarrow l\nu l\nu$ from Powheg+Pythia
- Apply the following cuts on truth jets:
 - Identification of "pseudo"-jets (a single lepton fakes a jet) ΔR(jet,lepton) < 0.2
 - Identification of the tagging-jets (tJet) (defined as the 2 jets with highest p,)
 - $$\begin{split} &\eta_{tJet1}^{*} \eta_{tJet1}^{} < 0 \\ &|\eta_{tJet1}^{} \eta_{tJet2}^{}| > 3.8 \\ &M_{tJet1,tJet2}^{} = ||p_{tJet1}^{} + p_{tJet2}^{}|| > 500 \text{ GeV} \\ &\Delta R(tJet, parton) < 0.5 \end{split}$$
 - Central-jet-veto η_{tJet1}^{min} < η < η_{tJet1}^{max}

- Shape comparison of "centrality": 0 or 1 = near one of the t-jets.
- A lot of central jets in signal are near the tag jets. \rightarrow FSR

Generator-level study

P. Jennifer Hsu (Mainz)

- A lot of central jets in signal are near the tag jets. \rightarrow FSR
- A Δ R-cut can help keeping those signals.

Generator-level study

P. Jennifer Hsu (Mainz)

- Central jets that are NOT close to tag jets: Pile-up?
- May be able to identify pile-up jets by pairing central jets and additional jets that are back-to-back.
- Work in progress: χ2 discriminant of back-to-back central jets.

 ΔR -distribution between central-jets and tagging-jets

- Central jets that are NOT close to tag jets: Pile-up?
- May be able to identify pile-up jets by pairing central jets and additional jets that are back-to-back.
- Work in progress: χ2 discriminant of back-to-back central jets.

- Understanding the origin of central jets in VBF signals can help improving the significance.
- Generator-level studies using VBF $H \rightarrow WW^* \rightarrow lvlv$ shows that the potential sources of central jets are FSR from tag jets and pile-up.
- CJV including a ΔR and/or a $\chi 2$ cut may keep those signals.
- Next step: Comparing to background processes.

Backup

• Standard 2j cut flow (after basic pre-selection):

ATLAS:	(5.8	fb-1)	

H+ 2-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
≥ 2 jets	14.5 ± 0.2	139 ± 3	30 ± 2	7039 ± 24	376 ± 11	104 ± 12	71±4	7759 ± 29	7845
b-jet veto	9.6 ± 0.2	95 ± 2	19 ± 1	356 ± 6	44 ± 4	62 ± 9	21 ± 2	597 ± 12	667
$ \Delta Y_{\rm jj} > 3.8$	2.0 ± 0.1	8.3 ± 0.6	2.0 ± 0.4	31 ± 2	5 ± 1	4 ± 2	1.4 ± 0.5	52 ± 3	44
Central jet veto (20 GeV)	1.6 ± 0.1	6.5 ± 0.5	1.3 ± 0.3	16 ± 1	4±1	1±1	0.5 ± 0.3	29 ± 2	22
$m_{\rm jj} > 500 {\rm GeV}$	1.1 ± 0.0	3.2 ± 0.4	0.7 ± 0.2	6.2 ± 0.7	1.8 ± 0.6	0.0 ± 0.0	0.0 ± 0.2	12 ± 1	13
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{tot}} < 30 \mathrm{GeV}$	0.8 ± 0.0	1.7 ± 0.3	0.3 ± 0.1	2.5 ± 0.5	0.8 ± 0.4	0.0 ± 0.0	0.0 ± 0.2	5.4 ± 0.7	6
$Z \rightarrow \tau \tau$ veto	0.7 ± 0.0	1.8 ± 0.3	0.3 ± 0.1	2.4 ± 0.4	0.8 ± 0.4	0.0 ± 0.0	0.0 ± 0.2	5.2 ± 0.7	6
$m_{\ell\ell} < 80 \text{ GeV}$	0.7 ± 0.0	0.6 ± 0.2	0.1 ± 0.1	0.8 ± 0.3	0.3 ± 0.2	0.0 ± 0.0	0.0 ± 0.2	1.9 ± 0.5	3
$\Delta \phi_{\ell\ell} < 1.8$	0.6 ± 0.0	0.5 ± 0.2	0.1 ± 0.1	0.5 ± 0.3	0.3 ± 0.2	0.0 ± 0.0	0.0 ± 0.2	1.4 ± 0.4	2

ATLAS-CONF-2012-098