

Excellence Cluster Universe

Based on:

- M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti & P. Vaudrevange, Phys. Lett. **B683**, 340 (2010)
- S. Raby, M.R. & K. Schmidt-Hoberg, Phys. Lett. **B687**, 342-348 (2010)
- R. Kappl, B. Petersen, S. Raby, M.R., R. Schieren & P. Vaudrevange, Nucl. Phys. **B847**, 325-349 (2011)
- S. Krippendorf, H.P. Nilles, M.R. & M. Winkler, Phys. Lett. **B712**, 87 (2012)
- M. Fischer, M.R., J. Torrado & P. Vaudrevange, JHEP 1301 (2013) 084
- S. Krippendorf, H.P. Nilles, M.R. & M. Winkler, arXiv:1306.0574
- M. Fischer et al., in preparation

Supersymmetric standard model and gauge unification

(Minimal) supersymmetric standard model

Supersymmetric standard model and gauge unification

(Minimal) supersymmetric standard model

-Supersymmetric standard model and gauge unification

(Minimal) supersymmetric standard model

-Supersymmetric standard model and gauge unification

(Minimal) supersymmetric standard model

Introduction

Supersymmetric standard model and gauge unification

Gauge coupling unification in the MSSM

Running couplings in the (minimal) supersymmetric standard model (MSSM)
Dimopoulos, Raby & Wilczek (1981)

-Supersymmetric standard model and gauge unification

Gauge coupling unification in the MSSM

 Running couplings in the (minimal) supersymmetric standard model (MSSM)
 Dimopoulos, Raby & Wilczek (1981)

Gauge coupling unification might be a consequence of $G_{\rm SM} = \frac{SU(3) \times SU(2) \times U(1) \subset SU(5) \subset \cdots \subset E_8$

-Supersymmetric standard model and gauge unification

Gauge coupling unification in the MSSM

 Running couplings in the (minimal) supersymmetric standard model (MSSM)
 Dimopoulos, Raby & Wilczek (1981)

Gauge coupling unification might be a consequence of $G_{\rm SM} = \frac{{
m SU}(3) \times {
m SU}(2) \times {
m U}(1) \subset {
m SU}(5) \subset \cdots \subset {
m E}_8$

Supersymmetric standard model and gauge unification

Accidents in Nature

Supersymmetric standard model and gauge unification

Gauge coupling unification in the MSSM

Main assumption: this is not an accident

Supersymmetric standard model and gauge unification

Gauge coupling unification in the MSSM

-Supersymmetric standard model and gauge unification

Gauge coupling unification in the MSSM

Main assumption: this is not an accident

Note: gauge unification not precise with `traditional' patterns of soft masses

Local vs. non-local GUT breaking

- Traditional prejudice
- Calabi-Yau compactification
- orbifold compactification

non-local breaking

cf. the models in talks by Andre & Burt

Gauge symmetry breaking in heterotic models

- 🖙 Local vs. non-local breaking

- 🖙 Local vs. non–local breaking

feature	non-local	local
local GUTs	×	1
fractionally charged exotics	×	1

- Traditional prejudice: CY : non-local orbifold : local

$$\left. \right\}$$
 breaking

Local vs. non-local breaking B

- Traditional prejudice: CY : non-local orbifold : local

$$\left. \right\}$$
 breaking

Local vs. non-local breaking B

Local vs. non-local gauge symmetry breaking

-Gauge symmetry breaking in heterotic models

Gauge symmetry breaking in heterotic models

 $\label{eq:constraint} \hbox{$$\tiny$$$$ $$$ $$ $$ Traditional prejudice: } \left\{ \begin{array}{cc} CY & : & non-local \\ orbifold & : & local \end{array} \right\} breaking$

🖙 Local vs. non-local breaking

feature	non-local	local
local GUTs	×	1
fractionally charged exotics	×	1
precision gauge unification	1	×

obvious question:

Can we have a hybrid scheme?

Local vs. non-local GUT breaking in field theory

Local vs. non-local GUT breaking in field theory

Hall, Murayama & Nomura (2002) ; Hebecker (2004)

 \bullet step: construct $\mathbb{T}^2/\mathbb{Z}_2$ orbifold which breaks SU(6) locally to $\frac{SU(5)}{}$

$$\mathbb{Z}_2$$
 : $(x_5, x_6) \rightarrow (-x_5, -x_6)$

Local vs. non-local GUT breaking in field theory

Local vs. non-local GUT breaking in field theory

- \bullet step: construct $\mathbb{T}^2/\mathbb{Z}_2$ orbifold which breaks SU(6) locally to $\underbrace{SU(5)}$
- e step: mod out a freely acting \mathbb{Z}'_2 symmetry which breaks SU(5) → SU(3)_C × SU(2)_L × U(1)_Y

$$\mathbb{Z}'_2$$
 : $(x_5, x_6) \rightarrow (-x_5 + \pi R_5, -x_6 + \pi R_6)$

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Non-local breaking in 6D

Anandakrishnan & Raby (2013)

Eigenstates and parity operations

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Non-local breaking in 6D

Anandakrishnan & Raby (2013)

Eigenstates and parity operations

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Non-local breaking in 6D

Anandakrishnan & Raby (2013)

Eigenstates and parity operations

$$\mathbb{Z}_{2} : \phi_{\pm \widehat{x}}(x_{\mu}, -x_{5}, -x_{6}) = \pm \phi_{\pm \widehat{x}}(x_{\mu}, x_{5}, x_{6}) \\ \mathbb{Z}'_{2} : \phi_{\pm \widehat{x}}(x_{\mu}, -x_{5} + \pi R_{5}, x_{6} + \pi R_{6}) = \widehat{\pm} \phi_{\pm \widehat{x}}(x_{\mu}, x_{5}, x_{6}) \\ (\text{local}') (\text{non-local}')$$

🖙 General mode expansion

$$\begin{split} \phi_{\pm \widehat{\pm}}(x, x_5, x_6) &= \frac{1}{4 \sqrt{2R_5 R_6}} \\ &\cdot \sum_{m,n} \left[\left(\phi^{(m,n)} \pm \phi^{(-m,-n)} \right) \widehat{\pm} (-1)^{m-n} \left(\phi^{(-m,n)} \pm \phi^{(m,-n)} \right) \right] \\ &\cdot \exp \left[\mathsf{i} \left(\frac{m}{R_5} x_5 + \frac{n}{R_6} x_6 \right) \right] \end{split}$$

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Modes for $\mathbb{T}^2/\mathbb{Z}_2$ (local breaking)

Trapletti (2006)

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Modes for $\mathbb{T}^2/\mathbb{Z}_2$ (local breaking)

Trapletti (2006)

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Modes for $\mathbb{T}^2/\mathbb{Z}_2$ (local breaking)

🖙 Mismatch

Trapletti (2006)

Local vs. non-local gauge symmetry breaking

Modes for non-local breaking

so Non-zero $\phi^{(m,n)}$ for $+\hat{+}$ modes

Local vs. non-local gauge symmetry breaking

Modes for non-local breaking

I Non−zero $\phi^{(m,n)}$ for +- modes

Local vs. non-local gauge symmetry breaking

Modes for non-local breaking

I Non−zero $\phi^{(m,n)}$ for $-\hat{+}$ modes

Local vs. non-local gauge symmetry breaking

Modes for non-local breaking

I Son-zero $\phi^{(m,n)}$ for −² modes

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Modes for non-local breaking

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Gauge unification: non-local GUT breaking

cf. also Ross (2004)

Local vs. non-local gauge symmetry breaking Local vs. non-local GUT breaking in field theory

Gauge unification: non-local GUT breaking

Gauge unification: non-local GUT breaking

Gauge unification: non-local GUT breaking

Precision gauge unification in strings

Local vs. non-local gauge symmetry breaking

Non-local GUT breaking in string models

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

step 1: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with SU(5) symmetry

Precision gauge unification in strings

Local vs. non-local gauge symmetry breaking

Non-local GUT breaking in string models

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

step 1: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with SU(5) symmetry

- step 2: mod out a freely acting \mathbb{Z}_2 symmetry which:
 - breaks $SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$
 - reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2006)

Braun, He, Ovrut & Pantev (2005)

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

GUT symmetry breaking non-local
∼ (almost) no `logarithmic running above the GUT scale'

Hebecker & Trapletti (2005) ; Anandakrishnan & Raby (2013)

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

- GUT symmetry breaking non-local

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

- GUT symmetry breaking non-local
- 2 No localized flux in hypercharge direction
- 8 No fractionally charged exotics

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

- GUT symmetry breaking non-local
- No localized flux in hypercharge direction
- 8 No fractionally charged exotics
- 4 Vacua with
 - exact MSSM spectrum
 - \mathbb{Z}_4^R symmetry $\sim \begin{cases} \text{solution to } \mu \text{ problem} \\ \text{realistic proton life-time} \end{cases}$
 - almost all moduli fixed in a supersymmetric way
 - gauge-top unification
 - ...

rightarrow recent re-analysis of R symmetries in orbifolds

→ talks by M. Schmitz & D. Pena Bizet, Kobayashi, Pena, Parameswaran, Schmitz & Zavala (2013)

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking ____Non-local GUT breaking in string models

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

Local vs. non-local gauge symmetry breaking

nic orbifold compactifications "stringy" description needed no 1D or 2D picture $\sim 1/M_{ m string}$ $L \sim 1/M_{\rm GUT}$ SU(5) fixed points

Local vs. non-local gauge symmetry breaking

sic orbifold compactifications "stringy" description needed empty" fixed point(s) $\sim 1/M_{ m string}$ $L \sim 1/M_{\rm GUT}$ non-local breaking SU(5)SU(5) bottom-line: $G_{\rm SM}$ fixed Anisotropic compactifications provide a points solution to the GUT vs. string scale problem but require a stringy description of the small directions

Fischer, M.R., Torrado & Vaudrevange (2013b) \rightarrow talk by M. Fischer

Complete classification of (symmetric) heterotic orbifolds

more detailled analysis of non-Abelian orbifolds

Konopka (2012) ; Fischer, Ramos-Sánchez & Vaudrevange (2013a) → talk by S. Ramos–Sánchez

recent progress in asymmetric orbifolds

Beye, Kobayashi & Kuwakino (2013)

Fischer, M.R., Torrado & Vaudrevange (2013b) \rightarrow talk by M. Fischer

- Complete classification of (symmetric) heterotic orbifolds
- Solution 31 geometries with non-trivial fundamental groups (after orbifolding!) with point groups $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$

38 additional geometries with non-trivial fundamental groups in non-Abelian orbifolds

Fischer, Ramos-Sánchez & Vaudrevange (2013a) \rightarrow talk by S. Ramos–Sánchez

- Some models are non-chiral but chirality may be achieved by adding fluxes
 Groot Nibbelink & Vaudrevange (2013) → talk by S. Groot-Nibbelink
- rightarrow recent analysis of $\mathbb{Z}_2 \times \mathbb{Z}_4$ models w/ local GUT breaking

Pena, Nilles & Oehlmann (2012) \rightarrow talk by P. Oehlmann

Fischer, M.R., Torrado & Vaudrevange (2013b) \rightarrow talk by M. Fischer

- Complete classification of (symmetric) heterotic orbifolds
- 31 geometries with non-trivial fundamental groups (after orbifolding!) with point groups $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$
- Geometries online and ready to use

Nilles, Ramos-Sánchez, Vaudrevange & Wingerter (2012)

Fischer, M.R., Torrado & Vaudrevange (2013b) \rightarrow talk by M. Fischer

- Complete classification of (symmetric) heterotic orbifolds
- Solution 31 geometries with non-trivial fundamental groups (after orbifolding!) with point groups $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$
- Geometries online and ready to use with the C++ orbifolder
- ► Many promising models w/ non-local GUT breaking

Fischer et al. (in preparation)

Implications for the LHC

Implications for the LHC

SUSY breaking in string models

Implications for the LHC

- Al(most al)I moduli fixed in a supersymmetric way in MSSM vacua with residual (discrete and/or approximate)
 R symmetries
 Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)
- Approximate R symmetries can explain an effective small constant in the superpotential

Kappl, Nilles, Ramos-Sánchez, M.R., Schmidt-Hoberg & Vaudrevange (2009)

 Approximate/discrete R symmetries provide us with a solution to the μ problem
 Brümmer, Kappl, M.R. & Schmidt-Hoberg (2010);

Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange (2011) ; ...

Approximate/discrete R symmetries provide us with a solution to the proton decay problems of the MSSM

Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange (2011) ; ...

Implications for the LHC

SUSY breaking in string models

Implications for the LHC

- Al(most al)I moduli fixed in a supersymmetric way in MSSM vacua with residual (discrete and/or approximate)
 R symmetries
 Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)
- Scenario with SUST by `matter field' X + dilaton S

stabilized with large mass from Coleman-Weinberg potential $m_S \gg \frac{m_{3/2}}{10...100 \text{ TeV}}$

Lebedev, Nilles & M.R. (2006) ; ...

SUSY breaking in string models

Implications for the LHC

- Al(most al)I moduli fixed in a supersymmetric way in MSSM vacua with residual (discrete and/or approximate)
 R symmetries
 Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)
- Scenario with SUSC by `matter field' X + dilaton S

SUSY breaking in string models

Implications for the LHC

- Al(most al)I moduli fixed in a supersymmetric way in MSSM vacua with residual (discrete and/or approximate)
 R symmetries
 Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)
- Scenario with SUSC by `matter field' X + dilaton S
- Mirage pattern for gaugino masses + heavy sfermions
- Yields natural scenario for precision gauge unification (PGU)
 Carena, Clavelli, Matalliotakis, Nilles & Wagner (1993)...Raby, M.R. & Schmidt-Hoberg (2010) Krippendorf, Nilles, M.R. & Winkler (2013)

Implications for the LHC

Highlights

Implications for the LHC: Highlights

 \square PGU is consistent w/ small μ

Implications for the LHC

Highlights

Implications for the LHC: Highlights

- \mathbb{P} PGU is consistent w/ small μ
- Geometric properties of ingredients of top–Yukawa coupling entail 'focus point' Krippendorf, Nilles, M.R. & Winkler (2012)

- 🖙 H_u , $Q_{
 m L}$ & $t_{
 m R}$ bulk fields
- Coinciding boundary conditions at high scale
- ➡ `Focus point'

Feng, Matchev & Moroi (2000)

Implications for the LHC

Implications for the LHC: Highlights

- \square PGU is consistent w/ small μ
- Geometric properties of ingredients of top-Yukawa
 coupling entail 'focus point'
 Krippendorf, Nilles, M.R. & Winkler (2012)
- PGU leads to naturally to a relic density of WIMPs which is consistent with observed CDM due to coannihilations

Krippendorf, Nilles, M.R. & Winkler (2013)

Implications for the LHC

Implications for the LHC: Highlights

- \square PGU is consistent w/ small μ
- Geometric properties of ingredients of top-Yukawa
 coupling entail 'focus point'
 Krippendorf, Nilles, M.R. & Winkler (2012)
- PGU leads to naturally to a relic density of WIMPs which is consistent with observed CDM due to coannihilations

Krippendorf, Nilles, M.R. & Winkler (2013)

Implications for the LHC

Implications for the LHC: Highlights

- \square PGU is consistent w/ small μ
- Geometric properties of ingredients of top–Yukawa
 coupling entail 'focus point'
 Krippendorf, Nilles, M.R. & Winkler (2012)
- PGU leads to naturally to a relic density of WIMPs which is consistent with observed CDM due to coannihilations

Krippendorf, Nilles, M.R. & Winkler (2013)

- Compressed gaugino spectra are harder to detect at the LHC Dreiner, Krämer & Tattersall (2012)
- Rather long-lived gluino

`Hybrid breaking' of $\mathrm{E}_8 o G_{\mathrm{SM}}$

- $\textcircled{0} \text{ Local breaking } E_8 \rightarrow SU(5)$
- Local GUTs explain complete matter representations
- Simple(r) structure of soft masses for sfermions

Summary

`Hybrid breaking' of $\mathrm{E}_8 o G_{\mathrm{SM}}$

- $\textcircled{0} \text{ Local breaking } E_8 \rightarrow SU(5)$
- Local GUTs explain complete matter representations
- Simple(r) structure of soft masses for sfermions

- **2** Non-local breaking $SU(5) \rightarrow G_{SM}$
- No fractionally charged exotics
- Precision gauge unification

Heterotic moduli stabilization & PGU

Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model

Heterotic moduli stabilization & PGU

- Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model
- Novel complete classification exhibits many settings with non-local GUT breaking in orbifolds

Heterotic moduli stabilization & PGU

- Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model
- Novel complete classification exhibits many settings with non-local GUT breaking in orbifolds
- MSSM models with discrete and/or approximate R symmetries: most moduli stabilized in supersymmetric Minkowski vacua
- Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model
- Novel complete classification exhibits many settings with non-local GUT breaking in orbifolds
- MSSM models with discrete and/or approximate R symmetries: most moduli stabilized in supersymmetric Minkowski vacua
- 🖙 SUSY by `matter field'
 - → heavy sfermions: $M_0 \sim m_{3/2} = O(10 100) \,\mathrm{TeV}$ \sim not accessible at the LHC

- Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model
- Novel complete classification exhibits many settings with non-local GUT breaking in orbifolds
- MSSM models with discrete and/or approximate R symmetries: most moduli stabilized in supersymmetric Minkowski vacua
- 🖙 SUSY by `matter field'
 - ► heavy sfermions: $M_0 \sim m_{3/2} = O(10 100) \text{ TeV}$
 - → mirage pattern: compressed spectra for the gauginos M_i comparable and of $O\left(\frac{m_{3/2}}{4\pi^2}\right) \sim \text{TeV}$

- Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model
- Novel complete classification exhibits many settings with non-local GUT breaking in orbifolds
- MSSM models with discrete and/or approximate R symmetries: most moduli stabilized in supersymmetric Minkowski vacua
- 🖙 SUSY by `matter field'
 - → heavy sfermions: $M_0 \sim m_{3/2} = O(10 100) \,\mathrm{TeV}$
 - mirage pattern: compressed spectra for the gauginos
 - \blacktriangleright consistent w/ precision gauge unification w/ small μ

- Heterotic orbifolds yield explicit and consistent stringy exensions of the standard model
- Novel complete classification exhibits many settings with non-local GUT breaking in orbifolds
- MSSM models with discrete and/or approximate R symmetries: most moduli stabilized in supersymmetric Minkowski vacua
- 🖙 SUSY by `matter field'
 - → heavy sfermions: $M_0 \sim m_{3/2} = O(10 100) \,\mathrm{TeV}$
 - mirage pattern: compressed spectra for the gauginos
 - \blacktriangleright consistent w/ precision gauge unification w/ small μ
- Interesting correlations between PGU and relic LSP abundance

Thank you very much!

References I

- Archana Anandakrishnan & Stuart Raby. SU(6) GUT Breaking on a Projective Plane. *Nucl.Phys.*, B868:627–651, 2013. doi: 10.1016/j.nuclphysb.2012.12.001.
- Marcin Badziak, Sven Krippendorf, Hans Peter Nilles & Martin Wolfgang Winkler. The heterotic MiniLandscape & the 126 GeV Higgs boson. *JHEP*, 1303:094, 2013. doi: 10.1007/JHEP03(2013)094.
- Florian Beye, Tatsuo Kobayashi & Shogo Kuwakino. Gauge Symmetries in Heterotic Asymmetric Orbifolds. 2013.
- Nana Geraldine Cabo Bizet, Tatsuo Kobayashi, Damian Kaloni Mayorga Pena, Susha L. Parameswaran, Matthias Schmitz and Ivonne Zavala. R-charge Conservation & More in Factorizable & Non-Factorizable Orbifolds. 2013.

References II

Michael Blaszczyk, Stefan Groot Nibbelink, Michael Ratz, Fabian Ruehle, Michele Trapletti & Patrick Vaudrevange. A Z2xZ2 standard model. *Phys.Lett.*, B683:340–348, 2010. doi: 10.1016/j.physletb.2009.12.036.

- Vincent Bouchard & Ron Donagi. An SU(5) heterotic standard model. *Phys. Lett.*, B633:783–791, 2006.
- Volker Braun, Yang-Hui He, Burt A. Ovrut & Tony Pantev. A heterotic standard model. *Phys. Lett.*, B618:252–258, 2005.
- Felix Brümmer, Rolf Kappl, Michael Ratz & Kai Schmidt-Hoberg. Approximate R-symmetries & the mu term. *JHEP*, 04:006, 2010. doi: 10.1007/JHEP04(2010)006.
- Marcela S. Carena, L. Clavelli, D. Matalliotakis, Hans Peter Nilles & C.E.M. Wagner. Light gluinos & unification of couplings. *Phys.Lett.*, B317:346–353, 1993. doi: 10.1016/0370-2693(93)91006-9.

References III

Michele Cicoli, Senarath de Alwis & Alexander Westphal. Heterotic Moduli Stabilization. 2013.

- S. Dimopoulos, S. Raby & Frank Wilczek. Supersymmetry & the scale of unification. *Phys. Rev.*, D24:1681–1683, 1981.
- Herbi K. Dreiner, Michael Krämer & Jamie Tattersall. How low can SUSY go? Matching, monojets & compressed spectra. *Europhys.Lett.*, 99:61001, 2012. doi: 10.1209/0295-5075/99/61001.

Jonathan L. Feng, Konstantin T. Matchev & Takeo Moroi. Multi -TeV scalars are natural in minimal supergravity. *Phys.Rev.Lett.*, 84:2322–2325, 2000. doi: 10.1103/PhysRevLett.84.2322.

Maximilian Fischer, Saúl Ramos-Sánchez & Patrick K. S. Vaudrevange. Heterotic non-Abelian orbifolds. 2013a.

References IV

Maximilian Fischer, Michael Ratz, Jesus Torrado & Patrick K.S. Vaudrevange. Classification of symmetric toroidal orbifolds. *JHEP*, 1301:084, 2013b. doi: 10.1007/JHEP01(2013)084.

- Stefan Groot Nibbelink & Patrick K.S. Vaudrevange. Schoen manifold with line bundles as resolved magnetized orbifolds. *JHEP*, 1303:142, 2013. doi: 10.1007/JHEP03(2013)142.
- Lawrence J. Hall, Hitoshi Murayama & Yasunori Nomura. Wilson lines & symmetry breaking on orbifolds. *Nucl.Phys.*, B645: 85–104, 2002. doi: 10.1016/S0550-3213(02)00816-7.
- A. Hebecker. Grand unification in the projective plane. *JHEP*, 01:047, 2004.
- A. Hebecker & M. Trapletti. Gauge unification in highly anisotropic string compactifications. *Nucl. Phys.*, B713: 173–203, 2005.

References V

- Luis E. Ibáñez, Hans Peter Nilles & F. Quevedo. Orbifolds & Wilson lines. *Phys. Lett.*, B187:25–32, 1987.
- Rolf Kappl, Hans Peter Nilles, Sául Ramos-Sánchez, Michael Ratz, Kai Schmidt-Hoberg & Patrick K.S. Vaudrevange. Large hierarchies from approximate R symmetries. *Phys. Rev. Lett.*, 102:121602, 2009.
- Rolf Kappl, Bjoern Petersen, Stuart Raby, Michael Ratz, Roland Schieren & Patrick K.S. Vaudrevange. String-derived MSSM vacua with residual R symmetries. *Nucl.Phys.*, B847:325–349, 2011. doi: 10.1016/j.nuclphysb.2011.01.032.
- Sebastian J.H. Konopka. Non Abelian orbifold compactifications of the heterotic string. 2012.
- Sven Krippendorf, Hans Peter Nilles, Michael Ratz & Martin Wolfgang Winkler. The heterotic string yields natural supersymmetry. *Phys.Lett.*, B712:87–92, 2012. doi: 10.1016/j.physletb.2012.04.043.

References VI

Sven Krippendorf, Hans Peter Nilles, Michael Ratz & Martin Wolfgang Winkler. Hidden SUSY from precision gauge unification. 2013.

- Oleg Lebedev, Hans Peter Nilles & Michael Ratz. de Sitter vacua from matter superpotentials. *Phys. Lett.*, B636:126–131, 2006. doi: 10.1016/j.physletb.2006.03.046.
- Hyun Min Lee, Stuart Raby, Michael Ratz, Graham G. Ross, Roland Schieren, Kai Schmidt-Hoberg & Patrick K.S. Vaudrevange. A unique Z_4^R symmetry for the MSSM. *Phys.Lett.*, B694:491–495, 2011. doi: 10.1016/j.physletb.2010.10.038.
- Markus A. Luty & Washington Taylor. Varieties of vacua in classical supersymmetric gauge theories. *Phys. Rev.*, D53: 3399–3405, 1996.

References VII

Hans Peter Nilles, Saúl Ramos-Sánchez, Patrick K.S. Vaudrevange & Akin Wingerter. The Orbifolder: A Tool to study the Low Energy Effective Theory of Heterotic Orbifolds. *Comput.Phys.Commun.*, 183:1363–1380, 2012. doi: 10.1016/j.cpc.2012.01.026. 29 pages, web page http://projects.hepforge.org/orbifolder/.

Damian Kaloni Mayorga Pena, Hans Peter Nilles & Paul-Konstantin Oehlmann. A Zip-code for Quarks, Leptons & Higgs Bosons. 2012.

Stuart Raby, Michael Ratz & Kai Schmidt-Hoberg. Precision gauge unification in the MSSM. *Phys.Lett.*, B687:342–348, 2010. doi: 10.1016/j.physletb.2010.03.060.

G. G. Ross. Wilson line breaking & gauge coupling unification. 2004.

Michele Trapletti. Gauge symmetry breaking in orbifold model building. *Mod.Phys.Lett.*, A21:2251–2267, 2006. doi: 10.1142/S0217732306021785.

- Orbifolds and Wilson lines
- Blaszczyk model
- SUSY vacua with residual R symmetries

Backup slides

Orbifolds and Wilson lines

Orbifolds & Wilson lines

Ibáñez, Nilles & Quevedo (1987) ; Hall, Murayama & Nomura (2002)

Backup slides

Orbifolds and Wilson lines

Orbifolds & Wilson lines

Backup slides

Crbifolds and Wilson lines

Orbifolds & Wilson lines

Backup slides

Orbifolds and Wilson lines

Orbifolds & Wilson lines

Discrete Wilson line:

going once around the torus leads to a non-trivial phase $W = \oint dx_5 A_5$

Backup slides

Crbifolds and Wilson lines

Orbifolds & Wilson lines

Backup slides

-Orbifolds and Wilson lines

Backup slides

Crbifolds and Wilson lines

-Orbifolds and Wilson lines

-Orbifolds and Wilson lines

Orbifolds and Wilson lines

Orbifolds & Wilson lines

Main message:

Discrete Wilson lines on the underlying torus leads to different boundary coditions at the fixed points Backup slides $\underline{\square}_{\mathbb{Z}_{4}^{R}}^{R}$ from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold models

\mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold model

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

${\tt Im}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds

\mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold model

- ${\tt Im}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds
- \square We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifolds
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 ✓ non-local GUT breaking

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- ${}^{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mm}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \m}\mbx{\tiny \mbx{\tiny \mbx{\$
- \square We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 - ✓ non-local GUT breaking
 - \checkmark no `fractionally charged exotics'

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- ${}^{\tiny \mbox{\tiny ISS}}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- 🙂 Various good features
 - √ non-local GUT breaking
 - ✓ no `fractionally charged exotics'
 - \checkmark (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- ${}^{\tiny \mbox{\tiny ISS}}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 - √ non-local GUT breaking
 - ✓ no `fractionally charged exotics'
 - ✓ (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_{+}^{R}
 - ✓ non-trivial full-rank Yukawa couplings

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- ${}^{\tiny \mbox{\tiny ISS}}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 - √ non-local GUT breaking
 - ✓ no `fractionally charged exotics'
 - \checkmark (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_{+}^{R}
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- ${}^{\tiny \mbox{\tiny ISS}}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 - ✓ non-local GUT breaking
 - ✓ no `fractionally charged exotics'
 - \checkmark (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - \checkmark SU(5) relation $y_{\tau} \simeq y_b$

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

- ${}^{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mm}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \m}\mbx{\tiny \mbx{\tiny \mbx{\$
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 - √ non-local GUT breaking
 - ✓ no `fractionally charged exotics'
 - \checkmark (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_{\tau} \simeq y_b$
- 🙄 However:
 - SU(5) Yukawa relations also for light generations
 - hidden sector gauge group only SU(3)

\mathbb{Z}_4^R from a $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold model

Blaszczyk, Groot Nibbelink, M.R., Ruehle, Trapletti & Vaudrevange. (2010) ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange (2011)

- ${}^{\tiny \mbox{\tiny ISS}}$ We constructed models with the exact MSSM spectrum based on $\mathbb{Z}_2\times\mathbb{Z}_2$ orbifolds
- \mathbb{R} We succeeded in finding vacua with the \mathbb{Z}_4^R symmetry
- Various good features
 - ✓ non-local GUT breaking
 - ✓ no `fractionally charged exotics'
 - \checkmark (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_{\tau} \simeq y_b$

bottom-line:

Successful string embedding of \mathbb{Z}_4^R possible!

SUSY vacua with \mathbb{Z}_4^R

Recall: situation for gauge theories with generic
 superpotential
 e.g. Luty & Taylor (1996)

solutions of D-equations \cap solutions of F-equations = non-trivial

SUSY vacua with \mathbb{Z}_4^R

Recall: situation for gauge theories with generic
 superpotential
 e.g. Luty & Taylor (1996)

solutions of D-equations \cap solutions of F-equations = non-trivial

■ However: $\langle \mathscr{W} \rangle \neq 0$ generically

SUSY vacua with \mathbb{Z}_4^R

Recall: situation for gauge theories with generic
 superpotential
 e.g. Luty & Taylor (1996)

solutions of D-equations \cap solutions of F-equations = non-trivial

- However: $\langle \mathscr{W} \rangle \neq 0$ generically
- is Vacua with residual \mathbb{Z}_4^R are slightly different
SUSY vacua with \mathbb{Z}_4^R

Recall: situation for gauge theories with generic
superpotential
e.g. Luty & Taylor (1996)

solutions of D-equations \cap solutions of F-equations = non-trivial

- However: $\langle \mathscr{W} \rangle \neq 0$ generically
- $\ {f Imes}$ Vacua with residual ${\Bbb Z}_4^R$ are slightly different
- Solution Example: consider one field ϕ_0 with *R*-charge 0 and one field ϕ_2 with *R*-charge 2

 $\mathscr{W} = \phi_2 \cdot f(\phi_0) + O(\phi_2^3)$ with $\langle \mathscr{W} \rangle = 0$ automatic

SUSY vacua with \mathbb{Z}_4^R

Recall: situation for gauge theories with generic
superpotential
e.g. Luty & Taylor (1996)

solutions of D-equations \cap solutions of F-equations = non-trivial

■ However: $\langle \mathscr{W} \rangle \neq 0$ generically

0-111

- ${}^{\mbox{\tiny \sc sc s}}$ Vacua with residual \mathbb{Z}_4^R are slightly different
- Solution Example: consider one field ϕ_0 with *R*-charge 0 and one field ϕ_2 with *R*-charge 2

$$\mathscr{W} = \phi_2 \cdot f(\phi_0) + O(\phi_2^3)$$
 with $\langle \mathscr{W} \rangle = 0$ automatic

$$F_{\phi_0} = \frac{\partial \mathcal{W}}{\partial \phi_0} = \phi_2 \cdot f'(\phi_0) + O(\phi_2^{-3}) = 0 \quad @ \phi_2 = 0$$

SUSY vacua with \mathbb{Z}_4^R

Recall: situation for gauge theories with generic
superpotential
e.g. Luty & Taylor (1996)

solutions of D-equations \cap solutions of F-equations = non-trivial

■ However: $\langle \mathscr{W} \rangle \neq 0$ generically

0-111

- ${}^{\mbox{\tiny \sc sc s}}$ Vacua with residual \mathbb{Z}_4^R are slightly different
- Solution Example: consider one field ϕ_0 with *R*-charge 0 and one field ϕ_2 with *R*-charge 2

$$\mathscr{W} = \phi_2 \cdot f(\phi_0) + O(\phi_2^3)$$
 with $\langle \mathscr{W} \rangle = 0$ automatic

$$F_{\phi_0} = \frac{\partial \mathcal{W}}{\partial \phi_0} = \phi_2 \cdot f'(\phi_0) + O(\phi_2^{-3}) = 0 \quad @ \phi_2 = 0$$

$$F_{\phi_2} = \frac{\partial \mathscr{W}}{\partial \phi_2} = f(\phi_0) \stackrel{!}{=} 0 \text{ fixes } \phi_0$$

Backup slides

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

back

 ${}^{\tiny \mbox{\tiny W}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

Backup slides

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

 ${}^{\tiny \mbox{\tiny IS}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

$$\mathscr{W} = \sum_{j} \phi_{2}^{(j)} \cdot f^{(j)}(\phi_{0}^{(1)}, \ldots) + \ldots$$

Backup slides

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

 ${}^{\tiny \mbox{\tiny IS}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

$$\mathscr{W} = \sum_{j} \phi_{2}^{(j)} \cdot f^{(j)}(\phi_{0}^{(1)}, \ldots) + \ldots$$

$$F_{\phi_0^{(i)}}$$
 = 0 automatically

Backup slides

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

 ${}^{\tiny \mbox{\tiny IS}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

$$\mathscr{W} = \sum_{j} \phi_{2}^{(j)} \cdot f^{(j)}(\phi_{0}^{(1)}, \ldots) + \ldots$$

$$F_{\phi_0^{(i)}} = 0$$
 automatically

 $F_{\phi_2^{(j)}} = 0 \quad \curvearrowleft \quad f^{(j)}(\phi_0^{(1)},\ldots) \stackrel{!}{=} 0 \quad \curvearrowleft \quad M \text{ constraints on } N \text{ fields}$

Backup slides

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

 ${}^{\tiny \mbox{\tiny W}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

$$\mathscr{W} = \sum_{j} \phi_{2}^{(j)} \cdot f^{(j)}(\phi_{0}^{(1)}, \ldots) + \ldots$$

$$F_{\phi_0^{(i)}} = 0$$
 automatically

$$F_{\phi_2^{(j)}} = 0 \quad \curvearrowleft \quad f^{(j)}(\phi_0^{(1)},\ldots) \stackrel{!}{=} 0 \quad \curvearrowleft \quad M \text{ constraints on } N \text{ fields}$$

▶ expect solutions for $N \ge M$

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

 ${}^{\tiny \mbox{\tiny W}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

$$\mathscr{W} = \sum_{j} \phi_{2}^{(j)} \cdot f^{(j)}(\phi_{0}^{(1)}, \ldots) + \ldots$$

$$F_{\phi_0^{(i)}} = 0$$
 automatically

 $F_{\phi_2^{(j)}} = 0 \quad \curvearrowleft \quad f^{(j)}(\phi_0^{(1)},\ldots) \stackrel{!}{=} 0 \quad \curvearrowleft \; M \text{ constraints on } N \text{ fields}$

- ▶ expect solutions for $N \ge M$
- \rightarrow M non-trivial mass terms (also for T- and Z-moduli!)

SUSY vacua with \mathbb{Z}_4^R

SUSY vacua with \mathbb{Z}_4^R (cont'd)

 ${}^{\tiny \mbox{\tiny W}}$ Generalization: consider N fields $\phi_0^{(i)}$ with R-charge 0 and M fields $\phi_2^{(j)}$ with R-charge 2

$$\mathscr{W} = \sum_{j} \phi_{2}^{(j)} \cdot f^{(j)}(\phi_{0}^{(1)}, \ldots) + \ldots$$

$$F_{\phi_0^{(i)}} = 0$$
 automatically

 $F_{\phi_2^{(j)}} = 0 \quad \curvearrowleft \quad f^{(j)}(\phi_0^{(1)},\ldots) \stackrel{!}{=} 0 \quad \curvearrowleft \; M \text{ constraints on } N \text{ fields}$

- ▶ expect solutions for $N \ge M$
- ➡ M non-trivial mass terms (also for T- and Z-moduli!)
- Have identified configurations with $N \ge M$ in our $\mathbb{Z}_2 \times \mathbb{Z}_2$ model(s)