€3

TOHOKU

IIIIIIIIII

Planck implications for
nigh energy physics

@S1ring Pheno 2013
18Th July

Fuminobu Takahashi
(Tohoku University)

1303.7315, 1305.5099 with K. Nakayama, T. Yanagida
1305.6521 with K-S Jeong
1304.7987, 1306.6518 with T. Higaki and K. Nakayama

2013%F7H22H BEH



CiSlon Science.

Cosmology is now a pre
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Perfect agreement with the standard LCDM
model with 6 parameters. (4% Q.h?, O0uc, 7,1, In(Ay))
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What did we learn from Planck?

v Cosmological parameters are determined with

a greater accuracy.  Q.h° = 0.1199 + 0.0027
Qph?* = 0.02205 £ 0.00028

v Adiabatic and gaussian density perturbations
at super-horizon scales strongly support for
a simple class of inflation.

2013%F7H22H BEH



2013%F782

What did we learn from Planck?

v Cosmological parameters are determined with
Q.h® = 0.1199 £ 0.0027

a greater accuracy.

Qph? = 0.02205 -

- 0.00028

v Adiabatic and gaussian density perturbations
at super-horizon scales strongly support for
a simple class of inflation.

" Great! Now the time for precision
measurements. New physics is

\
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. about to be revealed! A 8




The rationale for precision
measurements

“The whole history of physics proves that a new discovery

is quite likely lurking at the next decimal place.”
Fk. Richtmeyer (1931)

“A precision experiment is justified if it can reveal a flaw
in our theory or observe a previously unseen

phenomenon, not simply because the experiment happens

* b4
to be feasible... S. L. Glashow, 1305.5482

Then where to look for?
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In this talk I focus on two possible extensions
to the std. LCDM model.

v Tensor mode (or B-mode polarization)
The inflation near the GUT scale.

v Dark radiation
Ultra-light relativistic degrees of freedom
at the recombination epoch.

There are many other extensions such as isocurvature
perturbations, non-Gaussianity, curvature, dark energy, etc.

cf. Suppressing Isocurvature Perturbations of QCD Axion DM” 1304.8131, K-S. Jeong, FT
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Tensor mode

Density perturbations are induced by distortion
of space;

ds® = —dt? + a*(t) @ + 2¢(z,t) + - - - ) (655 + hyi(z,t) + - - - ) dz'dx’
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Tensor mode

Density perturbations are induced by distortion
of space;

ds? = —dt? + a*(t) (1 {20 (. )+ - ) (O + hij (@, 8) + -+ ) du'dar?

Scalar
perturbations
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Tensor mode

Density perturbations are induced by distortion
of space;

ds? = —dt* + a*(t) (1 H{2C (. )+ - ) (O3 +Hhij (@, t) + -+ ) da'dar?

Scalar Tensor
perturbations perturbations
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Tensor mode

L ns—1
Scalar mode (Curvature) : Pr = A, (—)

TL¢
Tensor mode (gravitational waves):. P, = A, (]?)
0

The spectral index: 7Tlg

| The tensor-to-scalar ratio

At Hing 3
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: AS (1014 GGV)
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Fig. 1. Marginalized joint 68% and 95% CL regions for n; and rppoe from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models. :
predict o Planck collaborations, 1303.5082
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® Chaotic inflation models based on the monomial
potential are outfside the 1 sigma allowed region.
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@ It is possible to reduce only r, if the potential is
flatter and has a small (even negative) curvature.
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V// V/
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Polynomial chaotic inflation
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Polynomial chaotic inflation

Nakayama, FT, Yanagida, 1303.7315, 1303.5099

cf. Destri, Vega, Sanchez (2007) for non-susy case.

1 . A2
V ~ §g02 <m2 — V2mAsin6 ¢ + 7g02> :
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Polynomial chaotic inflation

Nakayama, FT, Yanagida, 1303.7315, 1303.5099

cf. Destri, Vega, Sanchez (2007) for non-susy case.

)\2
2 <m2 — V2mAsin6 ¢ + 5 2) :
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_ Many ground-based
_ W®( obserations: r > 0.01
’ LiteBIRD, EPIC: r > 1073
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Dark radiation

Extra relaftivistic

“ Dark radiation = degrees of freedom ~l
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Cosmic pie chart
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Cosmic pie chart
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Cosmic pie chart
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Dark radiation

Extra relaftivistic

Dark radiation = "
(DR) degrees of freedom ,-

DR contributes to the effective number
of neutrino species

Neg = 3.046 + A Neg
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Planck collaborations, 1303.5076

2013%F7H22H BEH



Standard value Negss = 3

Planck+WP+h t-
-BAO i

Ho

-BAO+ Ho

3.6 4.2

Ner
Planck collaborations, 1303.5076
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Standard value Negss = 3

Planck+WP-hikhL

P

(95%; Planck + WP + hlghL)

0.48
Nog = 3.52707¢

(95%; Planck + WP + highL + Hy + BAO) |

3.0 3.6 4.2

Net
Planck collaborations, 1303.5076
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If we infroduce light degrees of freedom to explain
DR, the following questions immediately arise.

1. Why still relativistic at late time? |
| 2. Why ANug ~ 0(0.1) ? |

3. How to distinguish between different models?

The DR models are broadly classified into
thermal and non-thermal production.
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Thermal production =
v B R — Nakayama, FT, Yanagida (2010

S. Weinberg (2013) K-S. Jeong, FT (2013)

v m<0.1eV == Symmetry forbidding the mass.

(i) Gauge symmetry, (ii) Chiral symmetry, (iii) Shift symmetry
Gauge bosons Chiral fermions NG bosons
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Thermal production =
Nakayama, FT, Yanagida (2010

S. Weinberg (2013) K-S. Jeong, FT (2013)

v m<0.1eV == Symmetry forbidding the mass.

(i) Gauge symmetry, (ii) Chiral symmetry, (iii) Shift symmetry
Gauge bosons Chiral fermions NG bosons

v/ ANeg = O(0.1 — 1) is natural.

Q A v 4/3
ANeff e (? g —|—Nf —|— ?NGB) (gzd ) ]

gxv — 10.75 Jxdec — 10.75 ~ 106.75
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Thermal production =
Nakayama, FT, Yanagida (2010

S. Weinberg (2013) K-S. Jeong, FT (2013)

v m<0.1eV == Symmetry forbidding the mass.

(i) Gauge symmetry, (ii) Chiral symmetry, (iii) Shift symmetry
Gauge bosons Chiral fermions NG bosons

v/ ANeg = O(0.1 — 1) is natural.

Q A v 4/3
ANeff e (? g —|—Nf —|— ?NGB) (gzd ) ]

gxv — 10.75 Jxdec — 10.75 ~ 106.75

v/ Relatively strong coupling with the SM sector.
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Consider an unbroken hidden gauge symmetry G,
which is thermalized thru Higgs porfal.

K-S. Jeong, FT 1305.6521
Hamada Kobayashl Jeong and FT in prepara’rlon

gt I Gt L e S e fid TS ST AR S SadEac o o AN Eagaas
= A STt o s 15 o e i i B em N SRS PR TRy

5 —ZF;,,F'W + 1Dgf? - \¢|2|H\2 ¥ Lsu

¢ : scalar charged under G G=U(1), SUN), etc.
H : SM Higgs doublet

Ao*[H [
Hidden gauge < > Standard

symmetry G Model

Thermalized thru
Higgs portal
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The hidden sector remains coupled to the SM sector at
temperatures below the mass of ¢.

| Lot = FF/ F’“”\H| por TpESh < i

cF nggs decays m’ro hldden sec’ror aF’rer EW breaklng

)\ /2 _1/2
A<Z5 ~ g m¢,
872
1 TTLf 'A

@ mh

f: SM quarks, leptons

The hidden sector is decoupled when the interaction rate
becomes equal to the Hubble parameter.
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Ao (M / m Log,olAg/GeV] K-S. Jeong, FT 1305.6521
» 872 & Hamada, Kobayashi, Jeong and FT, in preparation.
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Non-fthermal production

v/ Decay of heavy fields like inflaton, moduli (saxion), gravitino.

Ichikawa et al "07, Hasenkamp °11, Menestrina and
Scherrer 11, Higaki, Kamada, FT "12, Cicoli, Conlon and
Quevedo 12, Higaki FT "12, and many others.

v/ Non-trivial to explain the abundance.
Often overproduced =l constraints on microscopic theory.

v/ Almost decoupled from the SM. Difficult to probe?

I will consider the moduli decays
as a source of DR.

See talks by Angus,
Higaki, and Conlon

\. J
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Cosmological moduli problem

G. D. Coughlan et al (1983)

@ : moduli

A¢ during inflation

- @

The moduli dominate the Universe and decay after
BBN unless they are very heavy, thus altering the
light element abundances in contradiction with
observations.
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The simplest solution is to make the modulus heavier
than O(10)TeV so that it decays before BBN.
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The simplest solution is to make the modulus heavier
than O(10)TeV so that it decays before BBN.

Note however that one needs to make sure if the
modulus decay does not produce any unwanted
relics.

This depends on microscopic details of the moduli,
especially how they are stabilized.
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Moduli decays
v SUSY moduli

@ has a SUSY mass heavier than msy-.
@ e.g. KKLT

@ decays into gravitinos and gauginos/Higgsinos.

“*Moduli-induced gravi’rino/LSP problem" Endo, Hamaguchi, FT “06, Nakamura, Yamaguchi “06
Dine, Kitano, Morisse, and Shirman ~06.

BI‘(¢ T 2?703/2) = O(O.l)
['(¢p — AA) =T (¢ — AN
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Moduli decays
v SUSY moduli

@ has a SUSY mass heavier than msy-.
@ e.g. KKLT

@ decays into gravitinos and gauginos/Higgsinos.

"Moduli-induced gravitino/LSP problem” Endo, Hamaguchi, FT “06, Nakamura, Yamaguchi 06
Dine, Kitano, Morisse, and Shirman ~06.

. Br(¢ — 213/9) = O(0.1)
v Non-SUSY moduli D(p— AA) =T (¢ — I\)

o has a SUSY breaking mass of order (or lighter
than) ms; from Kahler potential.

e e.g. QCD saxion, overall volume modulus in LVS.

"Moduli-induced axion problem”
Higaki, Nakayama, FT 1304.7987

cf. Chun, Lukas 95, Hashimoto, Izawa, Yamaguchi and Yanagida "98
See also Cicoli, Conlon and Quevedo 12, Higaki and FT "12 for the LVS case.

e decays into axion pairs.



Moduli-induced axion problem [ Talk by Higaki )

) = K(T ¥l TT) respects a shift symmetry T — T + i«
S a
V2K 1T

The axion component a remains ultralight. 7T — (T

(Moduli ’7'\

1 K %TT
odr K %T

[o(T — aa) =

via the kinetic term

AXion pairs
(DR)

2013%F7H22H BEH



Moduli-induced axion problem [ Talk by Higaki )

K = K{ia TT) respects a shift symmetry T — T + ¢
Fa

The axion component a remains ultralight. T — (T) = R
B

(Moduli ’7'\

9T 3

I HH) ~
1 K%TT g ) STKTT e
647‘- KTT F(T R AA) ~ Ng |8va1s| m;

1287 (ReriS)Q KTT
thru Higgs/gauge bosons

Fa, IWSM

via the kinetic term

Standard
Model

AXion pairs
(DR)
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Higaki, Nakayama, FT 1304.7987
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AXion-photon conversion

1 ~ — —
o —ZgaaFWFW = gq,aF B

Sikivie "83

Axions mix with photons in the presence of magnetic

field. Y a
2
—— 5
W= e ~ 2 x 1071 eV (14 2)3/2X1/2 : Plasma frequency
Me

E : Axion energy
Axion-photon mixing in the early U: Higaki, Nakayama and FT, 1306.6518

Axion-photon mixing in cluster: Conlon and Marsh 1305.3603 (Talk by COHIOI’])
(cf. Scattering with matter considered in Conlon and Marsh 1304.1804)
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AXion-photon conversion

1 ~ — —
Sl — —ZgaaFWFW = g,all - B

Axions mix with photons in the presence of magnetic

field. Y a
2
—— 5
W= e ~ 2 x 1071 eV (14 2)3/2X1/2 : Plasma frequency
Me

E : Axion energy

Resonant and non-resonant conversion ftake place.
Yanagida and Yoshimura "88, Sikivie "83

The conversion rate depends on Bo.



Intfergalactic magnetic field

I I
-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 O

log(Ag [Mpc])
Durrer and Neronov 1303.7121
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Intfergalactic magnetic field

CMB anisotropy

I I
-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 O

log(Ag [Mpc])
Durrer and Neronov 1303.7121
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Intfergalactic magnetic field

[ I

—B8 ﬁi

a CMB anisotropyﬂ;

If B is of primordial
origin, the axion-photon
coupling can be tightly

constrained by cosmology.

(cf. Wagstaff, Benerjee, Schleicher, Sigl,
1304.4723)

G

-12-11-10-9 -8 -7 -6 -5 -4 -3-2-1 0 1 2 3 4

log(Ag [Mpc])
Durrer and Neronov 1303.7121



L | —
N BBN ———— |
£ CMB(spec) :
CMB(aniso) e ]
diffuse .—.2.-. .

Typically, g, <107 GeV ™!
for ANz = 0(0.1)
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Conclusions

@ Precision cosmology will hopefully provide insight
intfo fundamental physics such as strings. Tensor
modes, DR, isocurvature, non-Gaussianity, etc.

v/ Tensor mode:

— Polynomial chaotic inflation can lead to ns and r
within 1 sigma allowed region.

v/ Dark radiation:

— Hidden gauge boson thermalized thru Higgs portal
can be probed by invisible Higgs decay.

— Axion DR produced by moduli decays may be
probed by the axion-photon conversion.
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