

Eirik Eik Svanes (University of Oxford)

July 16th 2013, StringPheno, DESY

Eirik Eik Svanes

Heterotic Calabi-Yau Compactifications with Flux - 1

Overview

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

|--|

Standard Setup: Calabi-Yau Relaxing Maximal

Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Motivation: Why Calabi-Yau with Flux?

Motivation

Standard Setup: Calabi-Yau

Relaxing Maximal

Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Usually, heterotic compactifications are of the form

 $\mathcal{M}_{10} = \mathcal{M}_4$ $\times \mathcal{M}_6$

maximally symmetric

Calabi-Yau

Heterotic Calabi-Yau Compactifications with Flux - 4

Motivation

Standard Setup: Calabi-Yau

Relaxing Maximal Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Usually, heterotic compactifications are of the form

$$\mathcal{M}_{10} = \underbrace{\mathcal{M}_4}_{\text{maximally symmetric}} \times \underbrace{\mathcal{M}_6}_{\text{Calabi-Yau}}$$

Motivation

Standard Setup: Calabi-Yau

Relaxing Maximal Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Usually, heterotic compactifications are of the form

$$\mathcal{M}_{10} = \underbrace{\mathcal{M}_4}_{\text{maximally symmetric}} \times \underbrace{\mathcal{M}_6}_{\text{Calabi-Yau}}$$

- $\blacksquare \ \delta\Omega, \ \bar{\partial}\delta\Omega = 0 \Rightarrow h^{2,1} \text{ complex structure moduli.}$
- $\blacksquare \ \delta J, \ \bar{\partial} \delta J = 0 \Rightarrow h^{1,1} \text{ K\"ahler moduli}.$

Motivation

Standard Setup: Calabi-Yau

Relaxing Maximal Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Usually, heterotic compactifications are of the form

$$\mathcal{M}_{10} = \underbrace{\mathcal{M}_4}_{\text{maximally symmetric}} \times \underbrace{\mathcal{M}_6}_{\text{Calabi-Yau}}$$

- $\blacksquare \ \delta\Omega, \ \bar{\partial}\delta\Omega = 0 \Rightarrow h^{2,1} \text{ complex structure moduli.}$
- $\blacksquare \ \delta J, \ \bar{\partial} \delta J = 0 \Rightarrow h^{1,1} \text{ K\"ahler moduli}.$
- Such compactifications are very attractive, as the gauge group $E_8 \times E_8$ easily fits the Standard Model.

Motivation

Standard Setup: Calabi-Yau

Relaxing Maximal Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Usually, heterotic compactifications are of the form

$$\mathcal{M}_{10} = \underbrace{\mathcal{M}_4}_{\text{maximally symmetric}} \times \underbrace{\mathcal{M}_6}_{\text{Calabi-Yau}}$$

Here $(\mathcal{M}_6, \Omega, J)$ is a Calabi-Yau with globally defined holomorphic three-form Ω and Kähler-form $J, \bar{\partial}\Omega = \bar{\partial}J = 0$.

 $\blacksquare \ \delta\Omega, \ \bar{\partial}\delta\Omega = 0 \Rightarrow h^{2,1} \text{ complex structure moduli.}$

•
$$\delta J, \ \bar{\partial} \delta J = 0 \Rightarrow h^{1,1}$$
 Kähler moduli.

- Such compactifications are very attractive, as the gauge group $E_8 \times E_8$ easily fits the Standard Model.
- Recently, hundreds of Standard Models have been discovered, [Anderson, Gray, Lukas, Palti; 1106.4804].

Motivation

Standard Setup: Calabi-Yau

Relaxing Maximal Symmetric \mathcal{M}_4

CY Domain Walls

Phenomenology

Conclusions and Outlook

Usually, heterotic compactifications are of the form

$$\mathcal{M}_{10} = \underbrace{\mathcal{M}_4}_{\text{maximally symmetric}} \times \underbrace{\mathcal{M}_6}_{\text{Calabi-Yau}}$$

- $\blacksquare \ \delta\Omega, \ \bar{\partial}\delta\Omega = 0 \Rightarrow h^{2,1} \text{ complex structure moduli.}$
- $\blacksquare \ \delta J, \ \bar{\partial} \delta J = 0 \Rightarrow h^{1,1} \text{ K\"ahler moduli}.$
- Such compactifications are very attractive, as the gauge group $E_8 \times E_8$ easily fits the Standard Model.
- Recently, hundreds of Standard Models have been discovered, [Anderson, Gray, Lukas, Palti; 1106.4804].
- Powerful tools of Algebraic Geometry and Kähler Geometry available.

$\begin{tabular}{l} \hline Motivation \\ \hline Standard Setup: Calabi-Yau \\ \hline Relaxing Maximal \\ \hline Symmetric \mathcal{M}_4$	Main problem of these compactifications is moduli stabilisation.
CY Domain Walls	
Phenomenology	
Conclusions and Outlook	

Motivation
Standard Setup: Calabi-Yau
Relaxing Maximal Symmetric \mathcal{M}_4
CY Domain Walls
Phenomenology
Conclusions and Outlook

Main problem of these compactifications is moduli stabilisation.

Heterotic has NS-flux H, but not allowed if M_4 maximally symmetric (no-go theorem).

Motivation
Standard Setup: Calabi-Yau
Relaxing Maximal
Symmetric \mathcal{M}_4
CY Domain Walls
Phenomenology
Filehomenology

Conclusions and Outlook

Main problem of these compactifications is moduli stabilisation.

- Heterotic has NS-flux H, but not allowed if M_4 maximally symmetric (no-go theorem).
- If we want to use flux to stabilise moduli, we next relax the condition of a maximally symmetric space-time.

Wotivation
Standard Setup: Calabi-Yau
Relaxing Maximal Symmetric \mathcal{M}_4
CV Domain Walls

Phenomenology

Conclusions and Outlook

Main problem of these compactifications is moduli stabilisation.

- Heterotic has NS-flux H, but not allowed if M_4 maximally symmetric (no-go theorem).
- If we want to use flux to stabilise moduli, we next relax the condition of a maximally symmetric space-time.

Simplest generalisation is a domain wall,

maximally symmetric

Non-compact

where

 $\mathcal{M}_7 = \mathbb{R}_y \times \mathcal{M}_6.$

Compact

Motivation
Standard Setup: Calabi-Yau
Relaxing Maximal Symmetric \mathcal{M}_4
CY Domain Walls

Phenomenology

Conclusions and Outlook

Main problem of these compactifications is moduli stabilisation.

- Heterotic has NS-flux H, but not allowed if M_4 maximally symmetric (no-go theorem).
- If we want to use flux to stabilise moduli, we next relax the condition of a maximally symmetric space-time.

Simplest generalisation is a domain wall,

maximally symmetric Non-compact

where

$$\mathcal{M}_7 = \mathbb{R}_y \times \underbrace{\mathcal{M}_6}_{\text{Compart}}$$

Compact

We let the fields be dependent on y. This allows for non-trivial flux.

Motivation
Standard Setup: Calabi-Yau
Relaxing Maximal Symmetric \mathcal{M}_4
CY Domain Walls

Phenomenology

Conclusions and Outlook

Main problem of these compactifications is moduli stabilisation.

- Heterotic has NS-flux H, but not allowed if M_4 maximally symmetric (no-go theorem).
- If we want to use flux to stabilise moduli, we next relax the condition of a maximally symmetric space-time.

Simplest generalisation is a domain wall,

maximally symmetric Non-compact

where

$$\mathcal{M}_7 = \mathbb{R}_y \times \underbrace{\mathcal{M}_6}_{\text{Compact}}$$

We let the fields be dependent on y. This allows for non-trivial flux.

We will take \mathcal{M}_6 to be a Calabi-Yau. Supersymmetry requires \mathcal{M}_6 half-flat.

Eirik Eik Svanes

Heterotic Calabi-Yau Compactifications with Flux - 5

Motivation	_
CY Domain Walls	_
Domain Wall Solution	•
Phenomenology	- :
Conclusions and Outlook	_
	•
	•
	•
	•
	•
	•

Supersymmetric Calabi-Yau Domain Walls

Domain Wall Solution

Motivation	Relax maximally symmetric space-time to allow for flux. Next: Supersymmetry.
CY Domain Walls	
Domain Wall Solution	
Phenomenology	
Conclusions and Outlook	
•	
•	
•	
•	

Conclusions and Outlook

Relax maximally symmetric space-time to allow for flux. Next: Supersymmetry. Require \mathcal{M}_6 Calabi-Yau. Supersymmetry then requires

$$\partial_y \Omega_+ = 2 \partial_y \phi \Omega_+ - H$$
$$J \wedge \partial_y J = \partial_y \phi J \wedge J$$
$$\Omega_- \wedge *H = 2 \partial_y \phi * 1,$$

where y is the direction parametrising \mathbb{R} .

Conclusions and Outlook

Relax maximally symmetric space-time to allow for flux. Next: Supersymmetry. Require \mathcal{M}_6 Calabi-Yau. Supersymmetry then requires

$$\partial_y \Omega_+ = 2 \partial_y \phi \Omega_+ - H$$
$$J \wedge \partial_y J = \partial_y \phi J \wedge J$$
$$\Omega_- \wedge *H = 2 \partial_y \phi * 1,$$

where y is the direction parametrising \mathbb{R} .

Also get constraint

 $\Omega_+ \wedge H = 0.$

Eirik Eik Svanes

Conclusions and Outlook

Relax maximally symmetric space-time to allow for flux. Next: Supersymmetry. Require \mathcal{M}_6 Calabi-Yau. Supersymmetry then requires

$$\partial_y \Omega_+ = 2 \partial_y \phi \Omega_+ - H$$
$$J \wedge \partial_y J = \partial_y \phi J \wedge J$$
$$\Omega_- \wedge *H = 2 \partial_y \phi * 1,$$

where y is the direction parametrising \mathbb{R} .

Also get constraint

$$\Omega_+ \wedge H = 0.$$

This system of equations may be solved for a generic Calabi-Yau with harmonic flux satisfying the constraint [Klaput, Lukas, Svanes 1305.0594].

Conclusions and Outlook

Relax maximally symmetric space-time to allow for flux. Next: Supersymmetry. Require \mathcal{M}_6 Calabi-Yau. Supersymmetry then requires

$$\partial_y \Omega_+ = 2 \partial_y \phi \Omega_+ - H$$
$$J \wedge \partial_y J = \partial_y \phi J \wedge J$$
$$\Omega_- \wedge *H = 2 \partial_y \phi * 1,$$

where y is the direction parametrising \mathbb{R} .

Also get constraint

 $\Omega_+ \wedge H = 0.$

This system of equations may be solved for a generic Calabi-Yau with harmonic flux satisfying the constraint [Klaput, Lukas, Svanes 1305.0594].

Dilaton is always a runaway direction. Complex structure moduli approach constants. Consistent with complex structure dependent 4d superpotential.

Motivation	
CY Domain Walls	
Phenomenology	
The $4d$ Effective Theory	y
What about phenomenol	ogy
Conclusions and Outlook	

Four-Dimensional Phenomenology

Motivation	We now move to consider the low-energy four-dimensional effective theory.
CY Domain Walls	
Phenomenology	
The $4d$ Effective Theory	
What about phenomenology	
Conclusions and Outlook	

Motivation CY Domain Walls	We now move to consider the low-energy four-dimensional effective theory.
$\frac{Phenomenology}{The \ 4d \ Effective \ Theory}$ What about phenomenology	It consists of:
Conclusions and Outlook	
0 0 0 0 0	

Motivation	We now move to consider the low-energy four-dimensional effective theory.	
CY Domain Walls		
Phenomenology	It consists of:	
The $4d$ Effective Theory		
What about phenomenology	$\blacksquare N = 1 \text{ SUGRA fields } (S, T^i, X^A),$	
Conclusions and Outlook		
•		

Motivation CY Domain Walls Phenomenology The 4*d* Effective Theory What about phenomenology

Conclusions and Outlook

We now move to consider the low-energy four-dimensional effective theory.

It consists of:

$$\blacksquare N = 1 \text{ SUGRA fields } (S, T^i, X^A),$$

$$K = -\log i(\bar{S} - S) - \log 8V - \log i(X^A \bar{\mathcal{G}}_A - \bar{X}^A \mathcal{G}_A),$$

 Motivation

 CY Domain Walls

 Phenomenology

 The 4d Effective Theory

 What about phenomenology

Conclusions and Outlook

We now move to consider the low-energy four-dimensional effective theory.

It consists of:

 $\blacksquare N = 1 \text{ SUGRA fields } (S, T^i, X^A),$

$$K = -\log i(\bar{S} - S) - \log 8V - \log i(X^A \bar{\mathcal{G}}_A - \bar{X}^A \mathcal{G}_A),$$

$$= W = \int H \wedge \Omega = \epsilon_A X^A + \mu^B \mathcal{G}_B,$$

where $H = \mu^A \alpha_A + \epsilon_B \beta^B$.

Eirik Eik Svanes

 Motivation

 CY Domain Walls

 Phenomenology

 The 4d Effective Theory

 What about phenomenology

Conclusions and Outlook

We now move to consider the low-energy four-dimensional effective theory.

It consists of:

- $\blacksquare N = 1 \text{ SUGRA fields } (S, T^i, X^A),$
- $\blacksquare K = -\log i(\bar{S} S) \log 8V \log i(X^A \bar{\mathcal{G}}_A \bar{X}^A \mathcal{G}_A),$

$$= W = \int H \wedge \Omega = \epsilon_A X^A + \mu^B \mathcal{G}_B,$$

where $H = \mu^A \alpha_A + \epsilon_B \beta^B$.

Vacuum state for $W \neq 0$: 1/2-BPS domain wall [Lukas, Matti 1005.5302].

Eirik Eik Svanes

Motivation CY Domain Walls Phenomenology The 4*d* Effective Theory What about phenomenology

Conclusions and Outlook

We now move to consider the low-energy four-dimensional effective theory.

It consists of:

- $\blacksquare N = 1 \text{ SUGRA fields } (S, T^i, X^A),$
- $\blacksquare K = -\log i(\bar{S} S) \log 8V \log i(X^A \bar{\mathcal{G}}_A \bar{X}^A \mathcal{G}_A),$

$$= W = \int H \wedge \Omega = \epsilon_A X^A + \mu^B \mathcal{G}_B,$$

where $H = \mu^A \alpha_A + \epsilon_B \beta^B$.

Vacuum state for $W \neq 0$: 1/2-BPS domain wall [Lukas, Matti 1005.5302]. Matches above 10d-solution for

the general case of half-flat: Large complex structure limit [Lukas et al., 1005.5302].

Motivation CY Domain Walls Phenomenology The 4*d* Effective Theory What about phenomenology

Conclusions and Outlook

We now move to consider the low-energy four-dimensional effective theory.

It consists of:

- $\blacksquare N = 1 \text{ SUGRA fields } (S, T^i, X^A),$
- $\blacksquare K = -\log i(\bar{S} S) \log 8V \log i(X^A \bar{\mathcal{G}}_A \bar{X}^A \mathcal{G}_A),$

$$= W = \int H \wedge \Omega = \epsilon_A X^A + \mu^B \mathcal{G}_B,$$

where $H = \mu^A \alpha_A + \epsilon_B \beta^B$.

Vacuum state for $W \neq 0$: 1/2-BPS domain wall [Lukas, Matti 1005.5302]. Matches above 10d-solution for

- the general case of half-flat: Large complex structure limit [Lukas et al., 1005.5302].
- Calabi-Yau: Everywhere in moduli space [Klaput et al., 1305.0594].

Motivation CY Domain Walls	So for any $10d$ Calabi-Yau domain-wall with harmonic flux, may be matched to $4d$ domain wall solution.
Phenomenology	
The $4d$ Effective Theory	
What about phenomenology	
Conclusions and Outlook	

Motivation
CY Domain Walls
Phenomenology
The $4d$ Effective Theory
What about phenomenology
Conclusions and Outlook

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

Motivation
CY Domain Walls
Phenomenology
The $4d$ Effective Theory
What about phenomenology
Conclusions and Outlook

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

Motivation	
CY Domain Walls	
Phenomenology	
The $4d$ Effective Theory	
What about phenomenology	
Conclusions and Outlook	

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

Instable solution: Dilaton is always a runaway direction ($y \to \infty$).

Motivation	
CY Domain Walls	
Phenomenology	
The $4d$ Effective Theory	
What about phenomenology	
Conclusions and Outlook	

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

- Unstable solution: Dilaton is always a runaway direction $(y \to \infty)$.
- Maximally symmetric compactifications: Similar problem. Dilaton remains unstabilised.

Motivation	
CY Domain Walls	
Phenomenology	
The $4d$ Effective Theory	
What about phenomenology	
Conclusions and Outlook	

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

- Unstable solution: Dilaton is always a runaway direction $(y \to \infty)$.
- Maximally symmetric compactifications: Similar problem. Dilaton remains unstabilised.

Usual solution: Add non-perturbative effects. Effect:

What about phenomenology

Motivation
CY Domain Walls
Phenomenology
The $4d$ Effective Theory
What about phenomenology
Conclusions and Outlook

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

- Instable solution: Dilaton is always a runaway direction $(y \to \infty)$.
- Maximally symmetric compactifications: Similar problem. Dilaton remains unstabilised.

Usual solution: Add non-perturbative effects. Effect:

Maximally symmetric: Stabilises dilaton.

What about phenomenology

Motivation
CY Domain Walls
Phenomenology
The $4d$ Effective Theory
What about phenomenology
Conclusions and Outlook

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

- Instable solution: Dilaton is always a runaway direction $(y \to \infty)$.
- Maximally symmetric compactifications: Similar problem. Dilaton remains unstabilised.

Usual solution: Add non-perturbative effects. Effect:

- Maximally symmetric: Stabilises dilaton.
- Domain wall: Lift to maximally symmetric (stable?) vacuum. Shown for the case of half-flat domain walls in [Klaput, Lukas, Matti, Svanes 1210.5933].

What about phenomenology

Motivation
CY Domain Walls
Phenomenology
The $4d$ Effective Theory
What about phenomenology
Conclusions and Outlook

So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain wall solution.

Advantage: Get superpotential which is used to stabilise moduli.

BUT:

- Unstable solution: Dilaton is always a runaway direction $(y \to \infty)$.
- Maximally symmetric compactifications: Similar problem. Dilaton remains unstabilised.

Usual solution: Add non-perturbative effects. Effect:

- Maximally symmetric: Stabilises dilaton.
- Domain wall: Lift to maximally symmetric (stable?) vacuum. Shown for the case of half-flat domain walls in [Klaput, Lukas, Matti, Svanes 1210.5933].

If possible to lift: May use flux in heterotic to stabilize moduli.

CY Domain Walls	
Phenomenology	
Conclusions and Outlook	
	•

Conclusions:

CY Domain Walls

Phenomenology

Conclusions and Outlook

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

- Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.
- Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d space-time.

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

- Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.
- Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d space-time.
- Lift to maximally symmetric space-time with non-perturbative effects.
 Same effects used to stabilise runaway moduli in conventional compactifications.

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

- Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.
- Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d space-time.
- Lift to maximally symmetric space-time with non-perturbative effects. Same effects used to stabilise runaway moduli in conventional compactifications.

Future directions:

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

- Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.
- Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d space-time.
- Lift to maximally symmetric space-time with non-perturbative effects.
 Same effects used to stabilise runaway moduli in conventional compactifications.

Future directions:

Study moduli stabilisation and lifting of an explicit model.

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

- Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.
- Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d space-time.
- Lift to maximally symmetric space-time with non-perturbative effects.
 Same effects used to stabilise runaway moduli in conventional compactifications.

Future directions:

- Study moduli stabilisation and lifting of an explicit model.
- What about chiral matter and the bundle moduli?

Motivation

CY Domain Walls

Phenomenology

Conclusions and Outlook

Conclusions:

- Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology. Problem: Hard to stabilise moduli.
- Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d space-time.
- Lift to maximally symmetric space-time with non-perturbative effects.
 Same effects used to stabilise runaway moduli in conventional compactifications.

Future directions:

- Study moduli stabilisation and lifting of an explicit model.
- What about chiral matter and the bundle moduli?
- Try other compactifications: cosmic string, black hole, ...

Thank you!

Motivation			
CY Domain Walls			
Phenomenology			
Conclusions and Outlook			
•			
•			
•			
•			
•	Thank you very much!		
•			
•			
•			
•			
•			
•			
•			
•			
•			

