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M10 = M4
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× M6
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Calabi-Yau

Here (M6,Ω, J) is a Calabi-Yau with globally defined holomorphic three-form Ω and
Kähler-form J , ∂̄Ω = ∂̄J = 0.

� δΩ, ∂̄δΩ = 0 ⇒ h2,1 complex structure moduli.

� δJ, ∂̄δJ = 0 ⇒ h1,1 Kähler moduli.

� Such compactifications are very attractive, as the gauge group E8 ×E8 easily fits
the Standard Model.

� Recently, hundreds of Standard Models have been discovered, [Anderson, Gray,
Lukas, Palti; 1106.4804].

� Powerful tools of Algebraic Geometry and Kähler Geometry available.
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Main problem of these compactifications is moduli stabilisation.

� Heterotic has NS-flux H , but not allowed if M4 maximally symmetric (no-go
theorem).

� If we want to use flux to stabilise moduli, we next relax the condition of a maximally
symmetric space-time.

Simplest generalisation is a domain wall,

M10 = M3
︸︷︷︸

maximally symmetric

× M7,
︸︷︷︸

Non-compact

where
M7 = Ry × M6.

︸︷︷︸

Compact

We let the fields be dependent on y. This allows for non-trivial flux.

We will take M6 to be a Calabi-Yau. Supersymmetry requires M6 half-flat.
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Relax maximally symmetric space-time to allow for flux. Next: Supersymmetry.
Require M6 Calabi-Yau. Supersymmetry then requires

∂yΩ+ = 2∂yφΩ+ −H

J ∧ ∂yJ = ∂yφJ ∧ J

Ω
−
∧ ∗H = 2∂yφ ∗ 1,

where y is the direction parametrising R.

Also get constraint

Ω+ ∧H = 0.

This system of equations may be solved for a generic Calabi-Yau with harmonic flux
satisfying the constraint [Klaput, Lukas, Svanes 1305.0594].

Dilaton is always a runaway direction. Complex structure moduli approach constants.
Consistent with complex structure dependent 4d superpotential.
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We now move to consider the low-energy four-dimensional effective theory.

It consists of:

� N = 1 SUGRA fields (S, T i, XA),

� K = − log i(S̄ − S)− log 8V − log i(XAḠA − X̄AGA),

� W =
∫
H ∧ Ω = ǫAX

A + µBGB ,

where H = µAαA + ǫBβB .

Vacuum state for W 6= 0: 1/2-BPS domain wall [Lukas, Matti 1005.5302]. Matches
above 10d-solution for

� the general case of half-flat: Large complex structure limit
[Lukas et al., 1005.5302].

� Calabi-Yau: Everywhere in moduli space
[Klaput et al., 1305.0594].
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So for any 10d Calabi-Yau domain-wall with harmonic flux, may be matched to 4d domain
wall solution.
Advantage: Get superpotential which is used to stabilise moduli.
BUT:

� Unstable solution: Dilaton is always a runaway direction (y → ∞).

� Maximally symmetric compactifications: Similar problem. Dilaton remains
unstabilised.

Usual solution: Add non-perturbative effects.
Effect:

� Maximally symmetric: Stabilises dilaton.

� Domain wall: Lift to maximally symmetric (stable?) vacuum.
Shown for the case of half-flat domain walls in [Klaput, Lukas, Matti, Svanes
1210.5933].

If possible to lift: May use flux in heterotic to stabilize moduli.
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Conclusions:

� Heterotic Calabi-Yau compactifications provide a fertile ground for phenomenology.
Problem: Hard to stabilise moduli.

� Use flux to stabilise moduli by relaxing assumption of maximally symmetric 4d
space-time.

� Lift to maximally symmetric space-time with non-perturbative effects.
Same effects used to stabilise runaway moduli in conventional compactifications.

Future directions:

� Study moduli stabilisation and lifting of an explicit model.

� What about chiral matter and the bundle moduli?

� Try other compactifications: cosmic string, black hole, ...
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Thank you very much!
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