Phenomenological models based on mixture configurations of magnetized D-branes

Keigo Sumita (Waseda University, JSPS Research Fellow)

To appear with Hiroyuki Abe and Tomoharu Horie

Introduction

- Magnetized brane model
- 10D SYM theory (D9-branes)
- Toroidal compactification with magnetic fluxes
- Superfield description
- 4D phenomenological model and (semi-) realistic flavor structures
- Mixture configuration (D5-D9 system)
- Some models and typical phenomenological features

4D N=1 decomposition

$$egin{aligned} &A_M = (A_\mu, \ A_i) & i \ : \ 1, 2, 3 \ &A_i \equiv -rac{1}{\mathrm{Im} au_i} \, (ar{ au}_i A_{2+2i} - A_{3+2i}) \ &\lambda = (\lambda_0, \ \lambda_i) \ &V = \{A_\mu, \ \lambda_0\} & \phi_i = \{A_i, \ \lambda_i\} \end{aligned}$$

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \Sigma_{i} 2(2\pi R_{i}) dz^{i} d\bar{z}^{\bar{i}} \qquad z_{i} \equiv \frac{1}{2} \left(x^{2+2i} + \tau_{i} x^{3+2i} \right)$$

zero-mode equation with magnetic fluxes

$$\bar{\partial}_{\bar{i}}\phi_j + \frac{1}{2} \left[\langle \bar{A}_{\bar{i}} \rangle, \phi_j \right] = 0 \quad \text{for} \quad i = j$$
$$\partial_i \phi_j - \frac{1}{2} \left[\langle A_i \rangle, \phi_j \right] = 0 \quad \text{for} \quad i \neq j$$

Nucl Phys. B, 863 (2012) 1

Gauge coupling constant
$$g$$
Dilaton S Torus areas $\mathcal{A}_i = (2\pi R_i)^2 \mathrm{Im} \tau_i$ \mathbf{K} ähler moduli T_i Torus shapes τ_i Complex structure moduli U_i

$$\langle \operatorname{Re}S \rangle = \frac{1}{g^2} \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_3 \ \langle \operatorname{Re}T_i \rangle = \frac{1}{g^2} \mathcal{A}_i \ \langle \operatorname{Re}U_i \rangle = \operatorname{Im}\tau_i$$

$$S_{\text{SUGRA}} = \int d^4x \sqrt{g^C} \left[\int d^4\theta C C^* \left(-3^{-K_{\text{eff}}/3} \right) + \left\{ \int d^2\theta \left(\frac{1}{4} f_a \left(\Phi_m \right) W^a W^a + C^3 W_{\text{eff}} \right) + h.c. \right\} \right]$$

$$-3e^{-K_{\rm eff}/3} = -3e^{-K_0/3} + Y_i \left(\Phi_m, \ \bar{\Phi}_m\right) \ \bar{\phi}_i \phi_i + \cdots$$
$$W_{\rm eff} = W_0 + \lambda_{ijk} \left(\Phi_m\right) \ \phi_i \phi_j \phi_k + \cdots$$

Nucl Phys. B, 863 (2012) 1

Magnetic fluxes and Wilson-lines

Gauge symmetry breaking

$$\langle A_i \rangle = \frac{\pi}{\mathrm{Im}\,\tau_i} \left(M^{(i)}\,\bar{z}_{\bar{i}} + \bar{\zeta}_i \right)$$

$$M^{(i)} = \begin{pmatrix} M_C^{(i)}\mathbf{1}_4 & & \\ & M_L^{(i)}\mathbf{1}_2 & \\ & & & M_R^{(i)}\mathbf{1}_2 \end{pmatrix},$$

$$\zeta_r = \begin{pmatrix} \zeta_C^{(r)}\mathbf{1}_3 & & \\ & \zeta_{C'}^{(r)} & \\ & & & & \zeta_L^{(r)}\mathbf{1}_2 & \\ & & & & & \zeta_{R''}^{(r)} \end{pmatrix},$$

 $U(8) \rightarrow SU_C(3) \times SU_L(2) \times U(1)^5$

Generation structure

$$\phi_i \sim \begin{pmatrix} & Q & & \\ & L & & \\ \hline & & H_u & H_d \\ \hline u & \nu & & \\ d & e & & \end{pmatrix}$$

ex) Q: gauge quantum numbers : $(\mathbf{3}, \mathbf{2}, \frac{1}{6})$ zero-modes degeneracy : $\Pi_i (M_C^{(i)} - M_L^{(i)})$ \Rightarrow generation

Nucl Phys. B, 870 (2013) 30

Zero-mode wavefunctions

- gaussian profiles by magnetic fluxes
- peak positions are shifted by Wilson lines

$y_{ij} \sim \int \left(\begin{array}{c} Q_{R_j} \\ Q_{L_i} \\ \end{array} \right)^H dz d\bar{z}$					
				Sample values	Observed
y_{ij} can be hierarchical!			$(m_{\nu_1}, m_{\nu_2}, m_{\nu_3})$	$(3.6 \times 10^{-19}, 8.8 \times 10^{-12}, 2.7 \times 10^{-11})$	$< 2 imes 10^{-9}$
		$ m_{\nu_1}^2 - m_{\nu_2}^2 $	7.67×10^{-23}	7.50×10^{-23}	
	Sample values	Observed	$ m_{\nu_1}^2 - m_{\nu_3}^2 $	7.12×10^{-22}	2.32×10^{-21}
(m_u, m_c, m_t)	$(3.1 \times 10^{-3}, 1.01, 1.70 \times 10^{2})$	$(2.3 \times 10^{-3}, 1.28, 1.74)$			
(m_d, m_s, m_b)	$(2.8 \times 10^{-3}, 1.48 \times 10^{-1}, 6.46)$	$(4.8 \times 10^{-3}, 0.95 \times 10^{-1})$		$(0.85 \ 0.46 \ 0.25)$	$(0.82 \ 0.55 \ 0.16)$
(m_e, m_μ, m_τ)	$(4.68 \times 10^{-4}, 5.76 \times 10^{-2}, 3.31)$	$(5.11 \times 10^{-4}, 1.06 \times 10^{-4})$	$ V_{\rm PMNS} $	0.50 0.59 0.63	0.51 0.58 0.64
$ V_{\rm CKM} $	$\left(\begin{array}{cccc} 0.98 & 0.21 & 0.0023 \\ 0.21 & 0.98 & 0.041 \end{array}\right)$	$\begin{pmatrix} 0.97 & 0.23 & 0 \\ 0.23 & 0.97 & 0 \end{pmatrix}$	0.041	0.15 0.66 0.73	(0.26 0.61 0.75)
	(0.011 0.040 1.0)	0.0087 0.040	1.0	Nucl Phys. B, 870 (20	13) 30

Magnetized D5 - D9 system

$$\int d^{10}x \sqrt{-g} \mathcal{L}_{D9}$$

$$\int d^{10}x \sqrt{-g} \left\{ \mathcal{L}_{D9} + (\mathcal{L}_{D5} + \mathcal{L}_{5-9}) \frac{\delta(z_i - c_i)}{\mathcal{A}_i} \frac{\delta(z_j - c_j)}{\mathcal{A}_j} \right\}$$

 $\mathcal{L}_{D9}: 10D \ U(N) \text{SYM}$ $\mathcal{L}_{D5}: 10D \ U(N') \text{SYM}$ $\mathcal{L}_{5-9}: ?? \qquad U(N+N') \ \text{SYM}$ $\phi_i \sim \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

Magnetized D5 - D9 system

Infinite Magnetic fluxes (D. Cremades, L. E. Ibanez and F. Marchesano)

- Infinite magnetic fluxes on 2nd and 3rd tori
- Localized as a point on 2nd and 3rd tori
- Chirality projection by magnetic fluxes

$$\begin{split} \phi_{1} \sim \begin{pmatrix} A_{1} \\ D_{1} \end{pmatrix} & \phi_{2} \sim \begin{pmatrix} A_{2} & B_{2} \\ D_{2} \end{pmatrix} \\ \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{3} \sim \begin{pmatrix} A_{3} \\ C_{3} & D_{3} \end{pmatrix} \\ & \phi_{4} & \Phi_{4} \end{pmatrix} \\ & \phi_{4} &$$

Phenomenological features

Model building

- ■_SUST sector
- More various flavor structures

SUSY mediation mechanism

- Multi Moduli + Anomaly + Gauge
- Deflected mirage mediation
 - (L. L. Everett, I.W. Kim, P. Ouyang and K. M. Zurek)

 Model 1
 D5
 D9

 SUSY
 MSSM

The MSSM derived from only the D9-branes
 →embed the D9 model

The SUSY sector on the D5-branes
 →more realistic models

The 5-9 modes as messengers or exotics
 →moduli, anomaly + gauge Mediation

A typical spectrum of superparticles

Deflected mirage mediation (L. L. Everett, I.W. Kim, P. Ouyang and K. M. Zurek)

- LSP,NLSP : neutralinos (975GeV, 994GeV)
- Supersymmetric flavor violations

Model 2 D5' - D5 - D9 SUSY MSSM

- More various flavor structures
- Nonuniversal gaugino masses

Model 3 D3 - D7 <u>SUS</u>Y MSSM

Pure gravity mediation

Summary

- Generalization :10D magnetized SYM \rightarrow magnetized D5-D9(or D3-D7) system
- Superfield description
 - \rightarrow 4D effective SUGRA derived from magnetized D5 –D9 system
- Typical models and Phenomenological features