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Overview

• Some loose ends regarding loops and instantons
• Sequestering and loop corrections in the LVS
• Toward a desequestering calculation for blow-up moduli
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E-instantons at one loop

Distant gaugino condensates/Euclidean D-branes
(E-instantons) are known to generate a potential for D3/D7
branes.
• [Bauman et al ’06, hep-th/0607050] showed this was

present and could be understood via a flux potential in 10D.
• The potential can also be understood as the

position-dependence of the gauge kinetic function, i.e.

W ⊃ Ae−aT = A(U)e−a(f
0+f1(y))

See also talk by [Martucci]
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E-instantons at one loop II

Similarly, they can lead to corrections to perturbatively allowed couplings:
• [Abel, MDG ’06] showed this could be the case in the case of E-instantons in IIA:

W ⊃ Yijkφiφjφk + YijkE φiφjφke
−VE

• [Marchesano, Martucci ’09] provided evidence for this effect in F-theory for
gaugino condensates/E-instantons via flux potentials:

W ⊃A(U)e−a(f
0+f1(y)) ⊃ 1

6
A(U)φiφjφk∂

3
ijke

−a(f0+f1(φ))

• [Berg, Conlon, Marsh, Witkowski ’12] considered gaugino condensate
corrections to Yukawa couplings and A-terms in IIB for branes at singularities
and explicitly calculated the result.

• It seems obvious that a similar result should be true for E-instantons.
• In principle, we could also have additional couplings that are not from the gauge

kinetic function if we haveA(U,φ).
• Restrictions arise from discrete symmetries in IIA→ (see talk by [Marchesano]

and many others) prompts re-exmination.
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Instanton calculus

Instanton amplitudes in type II strings have several components (derived by several
authors here):

1. Classical action given by volume of E-instanton, e−VE from infinite sum of
disconnected disk diagrams with boundary on E-brane and no vertex operators.

2. Product/sum over disconnected disk diagrams containing matter fields and two
charged zero modes (i.e. stretching from branes to the E-instanton)

3. Infinited product/sum over disconnected annulus/möbius strip diagrams with any
number of matter fields/uncharged fermionic zero modes (stretching from
E-brane to itself) inserted, excluding zero modes in the loop→ one-loop Pfaffian
from sum over empty diagrams e−Z

′
.

4. Integrate the whole thing over all fermionic zero modes

Adapted from [Blumenhagen et al, hep-th/0609191]:

〈
∏
Φi〉E =

∫
d4xd2θ

∏∑
a

(
∏
dλaE)(

∏
dλEa)e

−VEe−Z
′

×
∏
〈λaEλbE

∏
Φ〉tree ×

∏
〈
∏
Φ〉aE, loop
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Loop integrals
• The role of the disk diagrams and charged zero modes is fairly evident: if the

instanton intersects the visible sector then charged couplings arise.
• For sequestering, we are clearly interested in separated instantons→ no

charged zero modes.
• The loop diagrams with no matter field insertions, i.e. the Pfaffian, were shown to

be related to gauge threshold corrections, using the identity(
ϑν(z)ϑ

′
1(0)

ϑ1(z)ϑν(0)

)2

=
ϑ′′ν(0)

ϑν(0)
− ∂2 logϑ1(z)

to give

Z(E2,Da) =Na

∫
dt

t

∑
ν

δν
ϑ2
ν(
it
4 )

ϑ2
1(
it
4 )

η3(it/2)

ϑν(0)
Zintν

=−Na

∫
dt

4π2t

∑
ν

δν
ϑ′′ν(0)

η3(it/2)
Zintν

〈V0
A(k)V

0
A(−k)〉 =− εµεν(k

2ηµν − kµkν)Na

∫
dt

16π4t

∑
ν

δν
ϑ′′ν(0)

η3(it/2)
Zintν

→ Z(E2,Da) =∆

[
8π2

g2

]



Introduction E-instantons Corrections and soft terms Blow-up moduli Conclusions

Corrections to bosonic couplings

The above calculation can be almost trivially extended by
adding matter fields: for 1PI diagrams should not have
factorisation of matter operators, so write

〈
∏

φ〉loop
∣∣∣∣
k=0

= 〈
∏

V0
φ(k = 0)〉loop

i.e. we picture-change vertex operators on internal directions.
Then since V0

φ(k = 0) is just the identity on the non-compact
directions, we have

〈
∏

V0
φ(k = 0)〉aE, loop =Na

∫
dt

t

∑
ν

δν
ϑ2
ν(
it
4 )

ϑ2
1(
it
4 )

η3(it/2)

ϑν(0)
〈
∏

Vintφ 〉ν

which is just the same as 4π2 times the amplitude from
〈Aµ(k)Aν(−k)

∏
V0
φ(k = 0)〉ab modulo the Lorentz factor.
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Corrections to Yukawa couplings
• We have shown that instanton amplitudes are all prefaced by e

− 8π2

g2 where the
gauge couplings may depend on bosonic fields.

• We expect that the same result should hold for actual Yukawa couplings by
supersymmetry.

• For this we should compute 〈φψψ〉aE, loop; this is just the calculation of [Abel,
MDG ’06], but we want to check for IIB.

• It requires inserting bosonic zero modes in the amplitude; in IIA the result was

〈V0
φab

V
1/2
ψbc

V
1/2
ψca

V
−1/2
θ V

−1/2
θ 〉a,E2 = φ(ab)ψ(bc)αC

αβψ(ca)β θ1θ2

×
∫

dt it
3∏
i=2

∫it
0

dzi

2∏
j=1

∫1/2+it

1/2
dwj〈e

φ
2 (z2)e

φ
2 (z3)e

−
φ
2 (w1)e

−
φ
2 (w2)〉 lim

x1→z1
lim

x2→z2
lim

x3→z3

× (x1 − z1)(x2 − z2)
1/2(x3 − z3)

1/2〈S̃1(z2)S̃
1(z3)S̃

2(w1)S̃
2(w2)〉〈

3∏
i=1

eiki·X(zi)〉

∑
{y1,y2,y3}=P(x1,x2,x3)

3∏
κ=1

√
2

α′
〈∂X̄κ(yκ)σφκ

ab
(z1)σφκ

bc
(z2)σφκca

(z3)〉

×〈eiH
κ(yκ)e

i(φκ
(ab)

−1)Hκ(z1)
e
i(φκ

(bc)
−1/2)Hκ(z2)

e
i(φκ

(ca)
−1/2)Hκ(z3)

e
− i2H

κ(w1)e
− i2H

κ(w2)〉
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Yukawas cont’d

• Above is somewhat puzzling, since we now expect a clean
result.

• Furthermore, we have now five vertex operators; when we
integrate over their positions we naively expect that the
integrand should go like dt

t t
5 rather than dt

t t
3 as we

require.
• Let’s look at the case of IIB with D3 branes at singularities.
• Then do the integral in both IIA and IIB toroidal models

generally.
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Corrections to Yukawas due to instantons in IIB

Want to calculate 〈V0
φi
V

1/2
ψj
V

1/2
ψk
V

−1/2
θ V

−1/2
θ 〉Ae; vertex operators are

V0
φ =∂Z3

V
1/2
ψ =λαe

φ/2Sαe−
i
2H1e−

i
2H2e−

i
2H3∂Z3

V
−1/2
θ =θαe

−φ/2Sαe
i
2H1e

i
2H2e

i
2H3 .

Two different Lorentz structures:

〈SαSβSγSδ〉 =A1ε
αβεγδ +A2ε

αγεβδ

A1 =〈S+S−S+S−〉
A2 =〈S+S+S−S−〉

• Get φiA1(ψjψk)(θθ) +φiA2(ψjθ)(ψkθ).
• We must add the spin-structure part of the amplitude, as well as the bosonic part
〈(∂Z3)3〉 - which has different flavour structure to the Tree-level Yukawas.
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Spin structure summation and result
Find

A1 ∝− 2

∫
dt

t

∫ it/2

0
dx1dx2dy1dy2 exp[2πi(

x1 + x2 − y1 − y2

2
)]

× ϑ1(it/4)ϑ1(it/4 + x1 + x2 − y1 − y2)ϑ1(x1 − x2)ϑ1(y1 − y2)

ϑ1(x1 − y1)ϑ1(x1 − y2)ϑ1(x2 − y1)ϑ1(x2 − y2)

A2 ∝− 2

∫
dt

t

∫ it/2

0
dx1dx2dy1dy2 exp[2πi(

x1 − x2 + y1 − y2

2
)]

×
ϑ1(it/4 + y1 − x2)ϑ1(it/4 + x1 − y2)ϑ

′
1(0)2

ϑ1(y1 − x2)ϑ1(x1 − y2)ϑ1(it/4)2

Key observation is that both integrands are holomorphic in y1,y2, periodic in
yi→ yi + it/2 and antiperiodic in y→ y+ 1. Then[ ∫1/2+it/2

1/2
dy1 +

∫−1/2+it/2

1/2+it/2
dy1 +

∫−1/2

−1/2+it/2
dy1 +

∫1/2

−1/2
dy1

]
f =2

∫1/2+it/2

1/2
dy1f

and we can evaluate both by just finding the poles! We obtain

A1 =0

A2 =−π2

∫
dt

t
t3

∫1

0
〈(∂Z)3〉

i.e. we find the same result as for the bosonic case exactly and the Yukawa couplings
become Kähler-modulus dependent.
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Uncharged zero modes

Can we do this more generally?
• Recall that uncharged fermionic vertex operators are just the supercharges for

the broken supersymmetries:

V
−1/2
θ (y) =e−φ/2(y)θα(y)S

α(y)Σint(y)

V
−1/2
θ (y)V

−1/2
ψ (z) ∼(y− z)−1V−1

φ

• These fields are located on opposite boundary to matter fields; so the application
of the OPE was not immediately obvious

• Amplitude for one complex dimension is

〈eia
θ
κHκ(y)

∏
i6=θ

eia
i
κHκ(zi)〉ν =e

2πihκ[aθκy+
∑
j 6=θa

j
κzj]ϑν(hκit/2 + gκ +aθκy+

∑
i6=θ

aiκzi)

×
∏
i6=θ

ϑ1(y− zi)
aθκa

i
κ

∏
i<j 6=θ

ϑ1(zi − zj)
aiκa

i
κ .
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• When we construct an amplitude containing these, we
must sum over the spin structures ν.

• When we translate y→ y+ 1,y→ y+ it/2 we rotate the
spin-structures into each other: for a brane-brane
amplitude the spin-structure-dependent part picks up a
minus-sign.

• For the brane-E-brane amplitude it is instead invariant (due
to the two complex ND directions).

• The spin-structure independent part from∏
i 6=θ ϑ1(y− zi)

aθκa
i
κ picks up a phase −1 due to locality ...

• So the amplitude is always antiperiodic and we always
have the result that

〈Vθ
∏

Vψ
∏

Vφ〉 = 〈
∑

V

(
{Q,ψi}

)∏
j6=i

Vψj

∏
Vφ〉
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Consequences
• Result relevant for [Berasaluce-Gonzalez et al, 1206.2383],

[Marchesano et al, 1306.1284].

• A similar result is now true for additional fermionic zero modes.
In the toroidal orbifold CFT these just come from extra broken
supersymmetries.

• Hence if we have an annulus diagram containing extra fermionic
zero modes and the boundary conditions of the annulus
preserve the additional supersymmetries (i.e. for D3-D7 systems
this only applies to the extra SUSYs in the DD direction) then we
can treat them as SUSY generators.

• Furthermore, we have proved via the CFT calculus the several
assertions in [Blumenhagen, Schmidt-Sommerfeld ’08] of the
form
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Sequestering and the LVS
• The string scale depends on the compactification volume as
ms ∼

MP√
V

• In the LARGE volume scenario, gravitino mass is given by
m3/2 ∼

|W0|

V
MP

• If we want a GUT theory, we need a large string scale ∼ 1014÷16

GeV and thus V ∼ 104÷8, meaning m3/2 ∼ 1010÷14 GeV.

• Original LVS with the SM on a geometric cycle supporting an
instanton or gaugino condensate lead to MSOFT ∼

m3/2

logV
→ soft

masses only as low as 109 GeV.

Hence we either

1. Consider intermediate string scales and LHC-accessible SUSY.

2. Have a high string and intermediate SUSY-breaking scale (nb
the gauginos would not be light→ not unified).

3. A GUT and a SUSY solution to the hierarchy problem, if we can
suppress soft masses to be MP/V

3/2 or MP/V
2 → sequestering.
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Kähler corrections and Yukawa couplings
Following [Cicoli’s] talk:
• Since physical Yukawa couplings on magnetised branes, at least to leading

order, should not depend on the overall volume, and Yphysijk =
eK/2Yholijk√
KiiKjjKkk

,

K = −2 logV at leading order, so matter Kähler metrics at leading order are
∼ V−2/3.

• Tree-level Kähler potential has known α′ corrections

−2 log(V+ ξ/2) = −2 logV−
ξ

V
+ ...

• Hence tree-level Kähler metric should have the form [Blumenhagen et al,
0906.3297]

Kii =
k

V2/3
(1 − δ

Re(S)3/2

V
+ ...)

• Equivalently, if Kähler metric is eK/3 the Yukawa couplings would be invariant.
• Furthermore, since soft masses arem2

q̃i
=m2

3/2 +V0 − FIF
J
∂I∂J logKii the

above form leads to vanishing soft masses if V0 = 0 (F-term uplifting).
• This cancels the (α′)3 correction to soft to soft terms from eK/2 for appropriate
δ.

• → Kähler modulus dependence of physical Yukawa couplings implies
corrections scalar masses.

• We currently do not know at what order this occurs→ we do not know what the
soft masses are in the LVS!
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Known knowns and known unknowns

• (We think we) Know the Kähler potential to one-loop:

K0 =− 2 log(V+ ξ/2 + cτi ∩ τj) + k0,2
a

τ2
a

V
+
∑ E(U,U)

Re(S)τi
+
∑ Ẽ(U,U)

τiτj
+ ...

+

∞∑
n=1,m=1

gms
km,n
a

V
τna

• We know the Kähler metric at tree-level

Kii =
k

V2/3

[
1 − δ

Re(S)3/2

V
+ δ(1) 1

Re(S)

(
Re(S)

V2/3

)n/2

+
∑
n,m

gms ε
m,nτns + ...

]

• May also be non-perturbative corrections to superpotential and A-terms which
can lead to desequestering [Berg,Conlon,Marsh,Witkowski ’12].
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Unknowns
See talks by [Pedro, Aparicio, Cicoli,Krippendorf,Quevedo]

• Soft scalar masses schematically, V0 ∼
m2

3/2

τsg
3/2
s V

without uplifting:

m2
q̃ =

2

3
V0 + c

m2
3/2

g
3/2
s V

(δ− ξ/3)

• Gaugino masses depending on anomaly-mediation contribution, uplifting and
thus matter Kähler metrics:

Mλ =
MP

V3/2
÷ MP

V2

• Tree-level Kähler metrics: [Conlon, Witkowski ’11] showed no dependence of the
physical Yukawas on blow-up moduli, δ = ξ/3,ε(1) = 3k0,2

a /V etc (or more
generally e

∑
k0,m
a τma /V(1 +

∑
n,m g

m
s ε

m,nτns k/V
2/3)−3/2 = 1 ).

• [Lawrence, Sever ’07] attempted to calculate the disk correction k1,2
a → non-zero

and finite as V→∞, so can absorb into k0,2
a .

• For ultra-local models (e.g. locally C/Z3 orbifold) δ(1) = 0, no BHK corrections.
• The actual values of the soft masses in the sequestered scenario are therefore

not known. It is necessary to calculate then the additional pieces. Hence we
need to work “toward blow-up amplitudes” at one-loop.
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Toroidal orbifolds as prototypes

• Orbifolds T2 ×T2 ×T2/ZN are useful as prototypes for real
compactifications: they contain bulk moduli (up to three
Kähler moduli) and blow-ups with isolated singularities.

• Matter fields φi,ψi are projected out of N = 4 adjoints:
have Chan-Paton matrices λi, i = 1, 2, 3 for each torus and
projection λ = e2πibr/Nγθλγ

−1
θ for

∑
r br = 0.

• These are particularly simple to calculate with as we have
already seen ...

SU(N ) SU(N )

SU(N )
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Corrections to Yukawa couplings

• Want to calculate corrections to Kähler potential and metric involving blow-up
modes.

• Attempt to go straight for the goal: calculate Yukawa couplings to see whether
there are modulus-dependent corrections

Recall that for ultra-local models, e.g. Z3 orbifolds, have no corrections at one loop for
several reasons:

1. In twisted sector, the only amplitude possible is connects the same stack - so
cannot feel distant branes

2. Furthermore, in twisted sector, amplitude vanishes due to tadpole cancellation:

〈φiψjψk〉 ∝trL(γθλiλjλk)trR(γθ) = 0

3. In untwisted sector, amplitude vanishes due to effectiveN = 4 supersymmetric
states running in the loop: amplitude is proportional to a sum over spin structures

∑
ν

δν

4∏
i=1

ϑν(

3∑
j=1

a
j
izj) = 0 if

∑
i

a
j
i ∀j
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Amplitudes with blow-up moduli

• Want to calculate

〈φiψjψk
L∏
m=1

τθm〉

• The vertex operator for blow-up modes τθm contains bosonic twist fields which
greatly complicate the analysis:

V−1,−1
σθ

(w,w) = e−φe−φ̃eik·X
3∏
κ=1

eiθκH(w)e−iθκH̃wσθκ(w,w)

• We are interested in the case where the blow-ups are associated with distant
fixed-points under the orbifold group.

• The bosonic twists introduce branch cuts on the worldsheet which are
accompanied by chan-paton rotations γθ. We must also consider diagrams in
twisted sectors which introduce a further twist. Tadpole cancellation then
eliminates many diagrams.
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Twisted worldsheets
Consider e.g. Z3, where tr(γθ) = tr(γ2

θ) = 0 =
∑

perms(γ) tr(γθλ1λ2λ3). Insert
matter fields at Re(z) = −0.5:

Vanishes through trR(γθ) = 0

Vanishes when trR(γθγϕ) = 0
and always through∑

perms(γ) trL(γϕλ1λ2λ3) = 0

So we have no twisted-sector amplitudes that can contribute to the Yukawa coupling,
and there is no contribution to the matter Kähler metric linear in τθ.
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Untwisted sectors

• Recall that for the Yukawa couplings it was the Riemann summation part of the
amplitude that caused the amplitude to vanish.

• Let us calculate an untwisted amplitude with a twist and antitwist: we need

〈V0
φV

−1/2
ψ V

1/2
ψ V0,0

τθ
V0,0
τ1−θ
〉

• Note that we insert six Picture-Changing Operators (PCOs). These must be in
pairs for each complex dimension.

• We want to extract momentum-independent piece; thus we either need a
contribution from amplitude with PCOs inserted only on internal directions, or
need momentum poles (PCOs inserted on non-compact dimensions lead to
k ·ψ operators).

• We can evaluate the spin-structure sum for the all-internal case and, just as for
normal Yukawa couplings, find zero.
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5→ 4
• This is not a surprise! Actually it implies that the only corrections to the Yukawa

couplings come from factorising down to bosonic propagators (expression of
non-renormalisation theorem):

〈V0
φV

−1/2
ψ V

1/2
ψ V0,0

τθ
V0,0
τ1−θ
〉 → 〈V0

φV
0
φ
V0,0
τθ
V0,0
τ1−θ
〉

−→

• So in the end we are calculating matter Kähler metrics anyway.
• In fact, it is also important to compute the correction to the blow-up Kähler metric:
• For this we require simply

〈V0,0
τθ
V0,0
τ1−θ
〉

with two internal PCO insertions
• Evaluating the Riemann summation for both of these we do not find that they

vanish.
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Volume dependence
• Now want to find the volume dependence of the amplitude and ensure that it

does not decrease exponentially with the volume.
• Amplitude itself is complicated; volume dependence comes from bosonic

correlators.
• Two pairs of PCOs are now inserted internally:

A ∝〈σθiσ1−θi〉〈∂nX∂nXσθ1
j
σ1−θj〉〈∂nX∂nXσθkσ1−θk〉

• Volume factors come from classical solutions:

〈∂nX∂nXσθ(w1,w1)σ1−θ(w2,w2)〉 =(
∂nXcl∂nXclfqu(wi,wi) + 〈∂nX∂nXσθ(w1,w1)σ1−θ(w2,w2)〉qu

)
e−Scl

• To find the classical solutions we must construct a basis of cut differentials for the
∂Xcl obeying the boundary conditions∮

γ
dz∂X+

∮
γ
dz∂X = vγ

• vγ are given by cosets of the orbifold subject to the condition that the ends of the
string attach to separated branes.

• Problem becomes that of finding a set of basis cycles on worldsheet and their
associated shifts→ canonical dissection.
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Canonical dissection

∂X(z) ≡
{
∂Z(z) Re(z) > 0
∂Z(−z) Re(z) < 0

∂Z(z) =va(W
−1)ai′ω

i′
1−θ(z)

∂Z(z) =va(W
−1)ai′′ω

i′′
θ (z)

∂Z(z) =

(
∂Z(z)

)∗
S =

1

4πα′

∫
d2z∂X∂X+ ∂X∂X

=
i

4πα′
Sabvavb

From this, we construct Sab in terms of integrals of theω around the above cycles.
Action is substantially simpler than the case for a torus.
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Expectations and conjectures
• Expect that, since we are looking at a sequestered situation, that the dominant

contribution comes from closed string KK modes
• Go to closed-string channel, where t→ 0 and annulus becomes a long thin

cylinder.
• Dominant contributions from B-cycle only (also vA = 0) to go as

∫
γB
ω ∼ 1/t

• Expect other sums to just give constant and exponentially suppressed
contribution

• Expect ∂Xcl ∝ vB = 2π
√
T2
U2

(n+mU+ y)

• For matter Kähler metric, amplitude should be ∼ (∂Xcl)
4e−S; when we go to

closed string channel and Poisson-resum we should then find

A ∼

∫
dt

t3
t4
∑
ni,mi

1

R10t5

∏
i

e
− c
R2t

|ni+miUi|
2+2πimdy)

∼
1

R4

• Would lead to δKii ∼ K0
ii/τb.

• This corresponds to the field-theory expectation of exchange of a KK mode in six
dimensions.
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Conclusions

• Have resolved the role that annulus diagrams play in
instanton calculus

• Have developed some substantial technology for
calculating amplitudes with twist fields on annulus
diagrams

• We have some evidence for the corrections to the Kähler
metric corrections involving blow-up modes at one-loop
(even if we are some way from claiming a bottle of
champagne)

• → still going towards blow-up amplitudes ...
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Mahlzeit!
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