Electrically gauged N = 4 supergravities with N = 2 vacua

Christoph Horst

II. Institute of Theoretical Physics, University of Hamburg

in collaboration with Jan Louis and Paul Smyth based on JHEP 1303 (2013) 144

String Pheno, Hamburg July 17, 2013

Introduction

Spontaneously breaking supersymmetry:

► construct N = 4 supergravities in D = 4 with N = 2 vacuum → super-Higgs mechanisms with partial supersymmetry breaking:

$$N = 4 \xrightarrow{\text{spontaneously}} N = 2$$

- early examples known [de Roo & Wagemans '86, Wagemans '88], work towards classification of such theories
- ► check consistency of super-Higgs mechanism and compute the effective N = 2 action below the scale of partial SUSY breaking (~> geometry of the scalar manifold)

Why N = 4 supergravity?

• non-trivial matter sector (in contrast to N = 8):

1 gravity multiplet, $n \in \mathbb{N}$ vector multiplets

very restrictive couplings

Bergshoeff, Koh, Sezgin '85; de Roo '85; Schön, Weidner '06

 N = 4 gauged supergravities can arise from flux compactifications of string theory

Schön '06; Kashani-Poor, Minasian, Triendl '13

▶ also motivated by analysis of $N = 2 \rightarrow N = 1$

Cortés, Louis, Smyth, Triendl '10 & '13

see also talks by Dall'Agata and Kashani-Poor

Representation theory of N = 4 in Minkowski space

$$\{Q^A, \bar{Q}_B\} \sim \delta^A{}_B \Gamma^\mu P_\mu$$
, etc. $A, B = 1, \dots, N = 4$

massless N = 4 gravity multiplet: 1 graviton g_{µν} $\psi^i_\mu \\ A^{\mu m}$ $(i = 1, \dots, 4) \rightsquigarrow SU(4)$ $(m = 1, \dots, 6) \rightsquigarrow SO(6)$ 4 gravitini 6 vectors χ^i 4 hel-1/2 fermions 2 real scalars • *n* copies of massless N = 4 vector multiplets: $(a = 1, \ldots, n) \rightsquigarrow SO(n)$ Aμa n vectors 4n hel-1/2 fermions λai 6n real scalars

The scalars described by a non-linear σ -model on the homogeneous space:

$$\underbrace{\frac{SL(2)/SO(2)}{\dim 2} \times \underbrace{\frac{SO(6,n)/SO(6) \times SO(n)}{\dim 6n}}_{\dim 6n}}_{\text{dim } 6n}$$

Combine all vectors to $A^{\mu M} = (A^{\mu m}, A^{\mu a})$ where M is an SO(6, n) index.

Electrically gauged N = 4

Lagrangian:

$$\mathcal{L} = \mathcal{L}(\mathsf{fields}, f_{MNP}) = \dots$$

- deformation/gauging parameters
- quadratic consistency constraints

$$f_{MNP} = f_{[MNP]} \in \mathbb{R}$$
$$f_{R[MN} f_{PQ]}^{R} = 0$$

All theories classified by SO(6, n)-tensor equations

▶ however, for large $n \gg 1$

quadratic equations $\sim n^4$ # variables $\sim n^3$

summands in equation \sim n

 \rightsquigarrow numerical solutions only for small n

Why N = 2 vacua?

- important to understand vacuum structure. Ultimately, in a quantum theory many diverse vacua may influence the physics (via instanton effects).
 - \rightsquigarrow in addition to N = 0 or 1 consider also "exotic" vacua with N > 1

N = 0	not automatically stable
	another possible choice, but harder
<i>N</i> = 2	our choice
	harder to construct
	no super-Higgs mechanism

consider only maximally-symmetric vacua!

Local supersymmetry & Killing spinor equations:

- parametrized by local spinors $\epsilon^{i}(x)$ (*i* = 1, ..., 4)
- here: focus on supersymmetry transformations of maximally symmetric background with vanishing fermions F = 0 (B = boson)

$$\begin{split} \delta_{\epsilon}B &\sim \epsilon F = 0\\ \delta_{\epsilon}F &\sim \begin{cases} D\epsilon + \epsilon B & \text{ for } F = \text{gravitino}\\ \epsilon B & \text{ for } F \neq \text{gravitino} \end{cases} \end{split}$$

 \rightsquigarrow sufficient to consider variations of fermions:

$$\begin{split} \delta_{\epsilon}\psi^{i}_{\mu} &= D_{\mu}\epsilon^{i} + A^{ij}_{1}\bar{\sigma}_{\mu}\epsilon\,(\epsilon^{j})^{*} \\ \delta_{\epsilon}\chi^{i} &= A^{ij}_{2}\epsilon\,(\epsilon^{j})^{*} \\ \delta_{\epsilon}\lambda^{i}_{a} &= A^{i}_{2ai}\,\epsilon^{j} \end{split}$$

→ Killing spinor equations

Local supersymmetry & Killing spinor equations:

- parametrized by local spinors $\epsilon^{i}(x)$ (*i* = 1, ..., 4)
- here: focus on supersymmetry transformations of maximally symmetric background with vanishing fermions F = 0 (B = boson)

$$\delta_{\epsilon}B \sim \epsilon F = 0$$

 $\delta_{\epsilon}F \sim \begin{cases} D\epsilon + \epsilon B & \text{for } F = \text{gravitino} \\ \epsilon B & \text{for } F \neq \text{gravitino} \end{cases}$

 \rightsquigarrow sufficient to consider variations of fermions:

$$0 \stackrel{?}{=} \delta_{\epsilon} \psi^{i}_{\mu} = D_{\mu} \epsilon^{i} + A^{ij}_{1} \bar{\sigma}_{\mu} \epsilon (\epsilon^{j})^{*}$$

$$0 \stackrel{?}{=} \delta_{\epsilon} \chi^{i} = A^{ij}_{2} \epsilon (\epsilon^{j})^{*}$$

$$0 \stackrel{?}{=} \delta_{\epsilon} \lambda^{i}_{a} = A^{i}_{2ai} \epsilon^{j}$$

→ Killing spinor equations

Fermion shift-matrices

here,

$$A_{1}^{ij} = (\mathcal{V}_{-})^{*} \mathcal{V}^{M}{}_{[kl]} \mathcal{V}_{N}{}^{[ik]} \mathcal{V}_{P}{}^{[il]} f_{M}{}^{NP}$$

$$A_{2}^{ij} = \mathcal{V}_{-} \mathcal{V}^{M}{}_{[kl]} \mathcal{V}_{N}{}^{[ik]} \mathcal{V}_{P}{}^{[jl]} f_{M}{}^{NP}$$

$$A_{2ai}{}^{j} = \mathcal{V}_{-} \mathcal{V}^{M}{}_{a} \mathcal{V}^{N}{}_{[ik]} \mathcal{V}_{P}{}^{[jk]} f_{MN}{}^{P}$$

expressed in terms of scalar "vielbeins" for SL(2) and SO(6, n)

• $\delta_{\epsilon}\psi^{i}_{\mu} = 0$ yields integrability condition $\rightsquigarrow N \geq 1$ vacuum \Rightarrow no de Sitter-vacuum $\rightsquigarrow (A_{1}^{ij})$ has eigenvalue zero for each unbroken supersymmetry direction *i*

Quadratic constraints for N = 2 vacua

- ▶ need $n \ge 1$
- hard to solve in full generality for n > 7
- for n > 7 set f_{a26} [!]= 0 by hand
 → many consistent solutions can be constructed for any n ∈ N
- ► a large subset of equations for any *n* fully solved thanks to Lie's theorem in representation theory of solvable Lie algebras

Physical implications:

- → 2 massless gravitini,
 - 2 massive gravitini of degenerate mass $m_{3/2} > 0$
- \rightsquigarrow no N = 3 vacua and only Minkowski vacua (electric gaugings)
- \rightsquigarrow stability
- → super-Higgs mechanism (massive gravitini "eat" Goldstini, N = 2 mass degeneracies of superpartners, etc.)

~~ · · ·

Aspects of N = 2 low-energy effective theory

Mass terms:

gravity/Goldstini sector:

N = 2 multiplets	mass squared
gravity	0
BPS gravitino	$m_{3/2}^2$
2 imes vector	0

matter sector:

block	N = 2 multiplets	mass squared
$G_1^{(ij)} = G_4^{(ij)} = 0 \cdot \mathbb{1}_l$	$(I) \times$ massless vector $(I) \times$ BPS hyper	$ \begin{array}{c} 0 \\ m_{3/2}^2 \end{array} $
$(G_1^{(ij)})^2 = -x^2 \mathbb{1}_{2l'},$	$(2l') \times BPS$ vector	$(x^2 + y^2)$
$(G_4^{(ij)})^2 = -y^2 \mathbb{1}_{2l'}$ with $x \neq 0$ or $y \neq 0$	(l') imes BPS hyper (l') imes (BPS) hyper	$x^{2} + (m_{3/2} + y)^{2}$ $x^{2} + (m_{3/2} - y)^{2}$

all fields fit into complete N = 2 multiplets! massive N = 2 multiplets are BPS!

Aspects of N = 2 low-energy effective theory

Unbroken gauge group:

- leaves background invariant
- possible to construct compact, reductive Lie group

 $\textit{U(1)}^3 imes \textit{G}_{vac}$

N = 2 effective theory:

- ▶ below scale $m_{3/2}$ integrate out massive gravitini and their superpartners, etc.
- integrating out massive vectors affect scalar geometry since would-be Goldstone bosons are eliminated
- N = 2 scalar manifold expected to be

 $M_{
m special\ K\"ahler} imes M_{
m quaternionic\ K\"ahler}$

• only possibility of special Kähler manifold with factor SL(2)/SO(2) is

Ferrara, van Proeyen '89

 $SL(2)/SO(2) \times SO(2,k)/SO(2) \times SO(k)$

Conclusion & outlook

Conclusion:

- ▶ studied gauged N = 4 supergravities with N = 2 vacua
- classification of vacua amounts to solving a system of algebraic, quadratic equations
- ▶ while unable to fully solve constraints, constructed many electrically gauged N = 4 with N = 2 vacuum
- checked consistency of super-Higgs mechanism

Outlook:

- interesting to also find solutions in magnetically gauged N = 4, but more difficult constraints!
- construct vacua with N = 4, 3, 1 or N = 0 (e.g. with de Sitter-background)
- in principle, methods transferable to N = 8 supergravity with scalar manifold

$$E_{7,7}/(SU(8)/\mathbb{Z}_2)$$

of dimension 70

 \rightsquigarrow no free parameter $n \in \mathbb{N}$ but exceptional Lie group symmetry!