Phenomenology and Cosmology of Sequestered Scenarios

MICHELE CICOLI

Bologna University and ICTP Trieste

StringPheno 2013, DESY, 16 Jul 2013

Based on:

- 1. String inflation after Planck: Burgess, MC, Quevedo, arXiv:1306.3512 [hep-th]
- 2. Non-thermal DM in LVS: Allahverdi, MC, Dutta, Sinha, arXiv:1307.xxxx [hep-th]

Cosmological challenges for strings

Two ubiquitous problems of string compactifications:

Cosmological moduli problem:

- 1. ϕ starts oscillating at $H_{\rm osc} \sim m_{\phi}$ with $\phi_0 \sim M_P$
- 2. ϕ redshifts as matter \Rightarrow dominates the energy density
- 3. ϕ decays at $H_{\rm dec} \sim \Gamma \sim \epsilon^2 m_{\phi}$ where $\epsilon \sim m_{\phi}/M_P \ll 1$
- 4. Reheat temperature $T_{\rm rh} \sim \epsilon^{1/2} m_{\phi} > T_{\rm BBN} \simeq 3 \text{ MeV} \Rightarrow m_{\phi} > 50 \text{ TeV}$

Axionic dark matter overproduction:

- 1. $\mathcal{O}(100)$ axions in string compactifications
- 2. Some projected out, eaten up by anomalous U(1)s or heavy from NP effects
- 3. Some remain light \Rightarrow one can be the QCD axion with $f_a \sim M_s$
- 4. Overproduction of axionic cold DM for $f_a > 10^{12} \text{ GeV}$

Tension between these two problems:

 ϕ heavier/lighter than 50 TeV \Leftrightarrow high/low string scale \Leftrightarrow too much/right axion DM

Non-standard cosmology from strings

Focus on $m_{\phi} > 50 \text{ TeV} \Rightarrow \phi$ decay dilutes any previous relic:

- Axionic DM diluted if $T_{\rm rh} < \Lambda_{\rm QCD} \simeq 200$ MeV [Fox,Pierce,Thomas] \Rightarrow if $T_{\rm rh} \gtrsim T_{\rm BBN}$ can have $f_a \sim 10^{14}$ GeV without tuning
- Standard thermal LSP DM diluted if $T_{\rm rh} < T_{\rm f} \simeq m_{\rm DM}/20 \sim \mathcal{O}(10)$ GeV
- Baryon asymmetry diluted if produced before ϕ decay \Rightarrow good if baryogenesis in the early universe is too efficient

Decay products:

- Non-thermal LSP DM from ϕ decay \Rightarrow larger parameter space
 - Annihilation scenario for high $T_{\rm rh}$ (close to $T_{\rm f}$)
 - 1. abundant initial production of DM
 - 2. subsequent efficient annihilation \Rightarrow Wino/Higgsino-like DM
 - Stranching scenario for low $T_{\rm rh}$ (close to $T_{\rm BBN}$)
 - 1. smaller initial production of DM
 - 2. subsequent inefficient annihilation \Rightarrow Bino-like DM

Baryon asymmetry from ϕ decay \Rightarrow explain baryon-DM coincidence [Dutta et al]

Challenges for moduli decays

Two problems for moduli decays:

Gravitino problem:

- 1. if $m_{3/2} < m_{\phi}$ the gravitino is produced from ϕ decay
- 2. if $m_{3/2} < 50 \text{ TeV} \Rightarrow$ gravitino decays after BBN
- 3. if $m_{3/2} > 50 \text{ TeV} \Rightarrow$ gravitini could annihilate into DM \Rightarrow DM overproduction

Axionic dark radiation overproduction:

- 1. moduli are gauge singlets \Rightarrow they do not prefer to decay into visible sector fields
- 2. large branching ratio into light axions \Rightarrow large $N_{\rm eff}$

$$\rho_{\rm rad} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right)$$

3. Tight bounds from observations (Planck+WMAP9+ACT+SPT+BAO+HST): $N_{\rm eff} = 3.52^{+0.48}_{-0.45} \Rightarrow \Delta N_{\rm eff} \simeq 0.5$

LARGE Volume Scenario

In type IIB LVS models moduli masses and couplings can be computed explicitly \Rightarrow can study cosmological history of the universe

Two scenarios:

- Non-sequestered models:
 - 1. Visible sector in the geometric regime (magnetised intersecting D7-branes)

$$M_{\rm soft} \simeq m_{3/2} / \ln \left(M_P / m_{3/2} \right) \qquad m_\phi \sim M_{\rm soft} \sqrt{M_{\rm soft} / M_P} \ll M_{\rm soft}$$

- 2. CMP for volume mode ϕ since $m_{\phi} \sim \mathcal{O}(1)$ MeV for $M_{\rm soft} \sim \mathcal{O}(1)$ TeV
- 3. Intermediate string scale $M_s \simeq M_P \sqrt{\frac{M_{\text{soft}}}{M_P}} \ll M_P \Rightarrow \text{bad for GUTs and inflation}$

Sequestered models:

1. Visible sector in the singular regime (fractional D3-branes at singularities)

$$M_{\rm soft} \simeq m_{3/2} \left(\frac{m_{3/2}}{M_P}\right) \ll m_{3/2} \qquad m_{\phi} \sim M_{\rm soft} \left(\frac{M_P}{M_{\rm soft}}\right)^{1/4} \gg M_{\rm soft}$$

2. NO CMP for ϕ since $m_\phi \sim \mathcal{O}(10^{6-7})~{\rm GeV}$ for $M_{\rm soft} \sim \mathcal{O}(1)~{\rm TeV}$

3. High string scale $M_s \simeq M_P \left(\frac{M_{\text{soft}}}{M_P}\right)^{1/4} \Rightarrow \text{good for GUTs and inflation}$

Sequestered LVS

- Explicit LVS compactifications with fluxes, D3/D7-branes and O3/O7-planes
- Description of the compact CY by toric geometry [MC,Kreuzer,Mayrhofer]
- Global consistency: D5- & D7-tadpole, torsion charges and FW anomaly cancellation
- Moduli fixing compatible with chirality within the regime of validity of EFT
- D-term induced shrinking of the cycles supporting the visible sector
- Visible sector D3s at del Pezzo singularities [MC,Krippendorf,Mayrhofer,Quevedo,Valandro]
- Minkowski vacua from D-terms or E(-1) instantons [MC,Maharana,Quevedo,Burgess]
- Study of SUSY breaking with running down to TeV scale [Aparicio et al in progress]
- Study of axion phenomenology with explicit QCD axion candidates [MC,Goodsell,Ringwald]
- Interesting cosmology:
 - Inflation using Kähler moduli fits Planck data very well [Burgess, MC, Quevedo]
 - Axion dilution and non-thermal dark matter from moduli decays [Allahverdi, MC, Dutta, Sinha]
 - Dark radiation from light axions [MC,Conlon,Quevedo][Higaki,Takahashi]
 - ${\it I} {\it O}(200\,{\rm eV})$ cosmic axion background [Conton, Marsh]

Global embedding of D-branes at sing

- Diagonal' dPs crucial to embed quiver theories [MC,Krippendorf,Mayrhofer,Quevedo,Valandro]:
- Consider them to support the visible sector and turn on a non-zero flux: $\xi_{dP} \propto \int_{D_{dP}} J \wedge \mathcal{F}_{dP} = k_{dPjk} \mathcal{F}_{dP}^k t^j \propto t_{dP} = 0 \Rightarrow t_{dP} \to 0$
- Need 2 dP divisors exchanged by the orientifold involution $\Rightarrow h_{-}^{1,1} \ge 1$
- **9** 2 dPs do not intersect each other \Rightarrow they do not touch the O7 \Rightarrow U(N) groups
- Involution-invariant 'diagonal' dP for non-pert. effects (generation of W_{np} guaranteed)

Minimal set-up involves
$$h^{1,1} = 4$$
:

- 1. $h_{-}^{1,1} = 1$ *G*-modulus (reduction of B_2 and C_2)
- 2. $h_{+}^{1,1} = 3$ *T*-moduli (1 local blow-up + 1 NP cycle + volume mode)
- A dP divisor has 2 anomalous U(1)s $\Rightarrow d = 2$ moduli fixed by D-terms (G-modulus and local blow-up) \Rightarrow local axions eaten up
 - Other 'diagonal' dP and volume mode fixed by NP + α' effects

Simplest sequestered LVS model

• Volume form:
$$\mathcal{V} = \tau_b^{3/2} - \tau_{
m np}^{3/2} - \tau_{
m vs}^{3/2} \simeq \tau_b^{3/2}$$

- Solution Visible sector cycle shrinks to zero size due to D-terms: $\xi \propto \tau_{vs} \Rightarrow \tau_{vs} \to 0$
- Corresponding axion gets eaten up
- Sources for Kähler moduli stabilisation:

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{g_s^{3/2}}\right)$$
 and $W = W_0 + A e^{-\frac{2\pi}{N}T_{np}}$

Leading F-term potential from α' + non-pert. corrections:

$$V \sim \frac{\sqrt{\tau_{\rm np}}}{\mathcal{V}} e^{-\frac{4\pi\tau_{\rm np}}{N}} - W_0 \frac{\tau_{\rm np}}{\mathcal{V}^2} e^{-\frac{2\pi\tau_{\rm np}}{N}} + \frac{W_0^2 \xi}{q_s^{3/2} \mathcal{V}^3}$$

- Fix V and $au_{
 m np}$ at $au_{
 m np} \sim g_s^{-1}$ and $au \sim W_0 \, e^{rac{2\pi}{Ng_s}}$
- \bullet a_b is a light axion whereas a_{np} is heavy
- AdS minimum with spontaneous SUSY breaking
- Minkowski vacua via D-term uplifting or instantons at sing. [MC,Maharana,Quevedo,Burgess]

Mass spectrum

- Main difference with geometric case: no local SUSY breaking since $F^{vs} \propto \xi = 0$
- Sequestered soft terms: $M_{\rm soft} \sim m_{3/2}/\mathcal{V} \sim M_P/\mathcal{V}^2 \ll m_{3/2}$
- Get TeV-scale SUSY for $\mathcal{V} \sim 10^7 \Rightarrow$ high string scale $M_s \sim M_P / \sqrt{\mathcal{V}} \sim 10^{15}$ GeV
- Right GUT scale: $M_{\rm GUT} \sim M_s \mathcal{V}^{1/6} \sim 10^{16} \text{ GeV}$ [Conlon,Palti]

Mass spectrum:

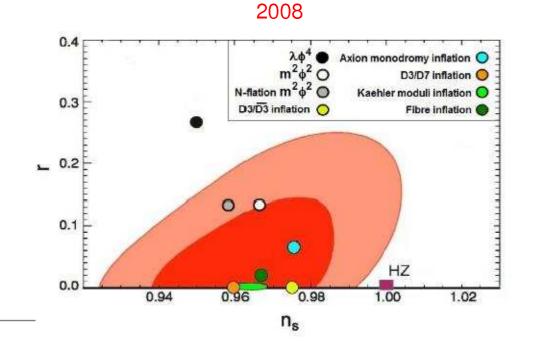
- $m_{\tau_{
 m vs}} \sim m_{a_{
 m vs}} \sim M_s \sim M_P / \sqrt{\mathcal{V}} \sim 10^{15} \ {\rm GeV}$
- $m_{\tau_{\rm np}} \sim m_{a_{\rm np}} \sim M_P \ln \mathcal{V} / \mathcal{V} \sim 10^{12} \text{ GeV}$
- $\ \ \, {\color{black} {\it I}} \ \, m_{3/2} \sim M_P/\mathcal{V} \sim 10^{11} \ {\rm GeV}$
- $\ \, {\it I} \ \, m_{\tau_b} \sim M_P / {\cal V}^{2/3} \sim 5 \times 10^6 \ {\rm GeV}$
- $M_{
 m soft} \sim M_P / \mathcal{V}^2 \sim 1 \, {
 m TeV}$
- No CMP since $m_{\tau_b} \gg 50 \, {\rm TeV}$ + No gravitino problem since $m_{3/2} \gg m_{\tau_b}$
- Successful inflation with $N_e \simeq 60$, $n_s \simeq 0.96$, $r \ll 1$, right amount of density perturbations and possibly power loss at large scales [Burgess,MC,Conlon,Pedro,Quevedo,Tasinato]
 - Reheating driven by decay of lightest modulus au_b

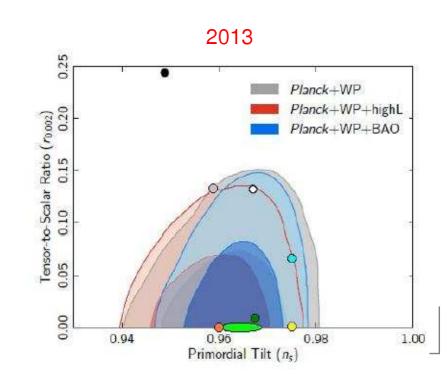
Closed string inflation

Inflation using Kähler moduli:

- No-scale structure broken by perturbative effects only by lifting V direction \Rightarrow naturally flat potential for fields ϕ orthogonal to V!
- Suppressed higher dim. operators due to approximate shift symmetry for ϕ
- Typical potential (in inflationary region):

$$V = V_0 \left(1 - \beta \kappa e^{-\kappa \phi} + \delta e^{+\mu \phi} \right) \simeq V_0 \left(1 - \beta \kappa e^{-\kappa \phi} \right) \qquad \beta \sim \mathcal{O}(1), \, \delta \propto g_s^4 \ll 1$$


- ${}^{m
 ho}$ κ depends on the details of the model: topology of ϕ and effects to generate V
- Typical prediction: $r = \frac{2}{\kappa^2} (n_s 1)^2 \Rightarrow \text{for } n_s \simeq 0.96 \Rightarrow r \simeq \frac{0.0032}{\kappa^2}$


Three models:

- 1. Kähler moduli inflation: $\kappa \sim \mathcal{V}^{1/2} \gg 1 \Rightarrow r \simeq 10^{-10}$ [Conlon,Quevedo]
- 2. Fibre inflation: $\kappa \sim \mathcal{O}(1) \Rightarrow 0.005 < r < 0.007$ [MC,Burgess,Quevedo]
- 3. Poly-instanton inflation: $\kappa \simeq \ln \mathcal{V} > 1 \Rightarrow r \simeq 10^{-5}$ [MC,Pedro,Tasinato]

 (n_s, r) -plane

- Solution \mathbf{P} Almost unanimous prediction of small r
- Well agreement with observations

Prospects for measuring r

Solutions more sensitive to r in near future: what might be found?

Two theoretical points of view:

1. Flat prior: ϵ and η similar in size: $\epsilon \simeq \eta$

 $n_s - 1 \simeq 2\epsilon - 6\eta \simeq -4\epsilon \simeq -0.04 \qquad \Rightarrow \qquad \epsilon \simeq 0.01 \qquad \Rightarrow \qquad r \simeq 16\epsilon \simeq 0.16$

 \Rightarrow tensor modes should soon be observed!

2. Flat log prior: size of tensor perturbations set by inflationary energy scale

$$r \sim (M_{\rm inf}/M_{\rm GUT})^4$$

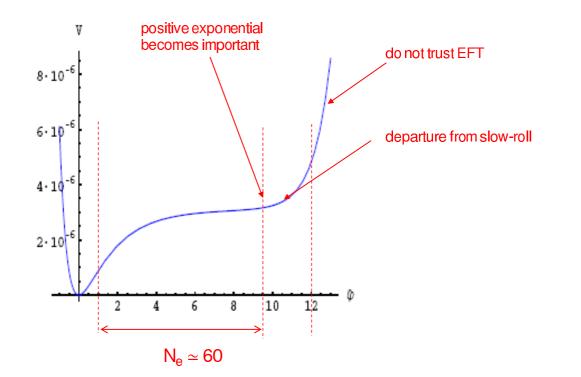
- \blacksquare M_{inf} could be anywhere between 100 and 10¹⁵ GeV
- No intrinsic reason to prefer any scale
 - \Rightarrow no preference for observable or unobservable r
- Stringy point of view: Trans-Planckian fields to obtain large r
 - Consistent EFT? Answer in string theory
 - Difficulty to find large r no-go theorems
 - Majority of known string models do not predict large r \Rightarrow expect r to be too small to be visible

Non-Gaussianities

Two mechanisms for non-Gaussianity in string inflation:

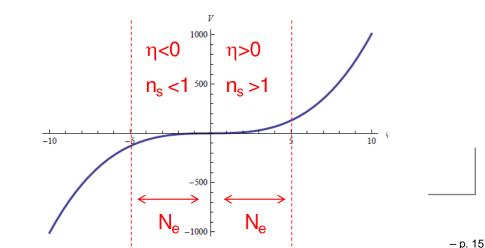
- 1. Non-canonical kinetic terms (DBI inflation)
 - Large NG due to departure from slow-roll
 - Tension with the data due to prediction of large equilateral and orthogonal NG

2. Multi-field dynamics


- Large NG due to large self-interaction of fields which generate NG
- A generic compactification has many moduli
 - \Rightarrow some of them heavier and some lighter than H_{inf}
- During inflation light fields get large quantum fluctuations
- Non-standard generation of density perturbations + large local NG
- Examples: curvaton or modulated reheating [Burgess,MC,Gomez-Reino,Quevedo,Tasinato,Zavala]

But in most cases multi-field models do NOT generate isocurvature perturbations due to an effective single-field dynamics – motion is along a trough!

- \Rightarrow partial explanation of why inflationary models describe the data so well
- \Rightarrow observational evidence for single-field models is not against multi-field models


Strings and power loss at large scales

- Qualitative behaviour of closed string inflation with volume moduli
- Typical potential: $V = V_0 \left(1 \beta \kappa e^{-\kappa \phi} + \delta e^{+\mu \phi} \right)$ $\beta \sim \mathcal{O}(1), \ \delta \propto g_s^4 \ll 1$
- Amplitude of scalar fluctuations: $A_s(\text{large scales}) \simeq \frac{V^{3/2}}{M_P^3 V'} \ll 10^{-5}$

No power loss in symmetric potentials

- Brane-antibrane inflation: fine-tuning to solve η -problem \Rightarrow inflection point inflation
- **•** Typical potential: $V = V_0 \left(1 + \lambda_1 \phi + \lambda_3 \phi^3 + \lambda_4 \phi^4 + ... \right)$
- ${}$ ${}$ Right n_s if $N_e > {\cal O}(140)$ and $r \ll 1$ [Baumann, McAllister et al]
- But blue-spectrum statistically favoured since $P(N_e) \propto 1/N_e^3$
- Power loss at large scales needs $N_e \sim \mathcal{O}(60-70) \Rightarrow$ tension with n_s

Leading volume decays

Reheating driven by decay of lightest modulus τ_b Leading decay channels for τ_b (ϕ is the canonically normalised modulus)

- 1. Higgses
- 2. closed string axions
- Decays to Higgs bosons: $\phi \to H_u H_d$ decays induced by the Giudice-Masiero term, $K \supset Z \frac{H_u H_d}{2\tau_b}$, with $Z \sim \mathcal{O}(1)$:

$$\Gamma_{\phi \to H_u H_d} = \frac{2Z^2}{48\pi} \frac{m_{\phi}^3}{M_{\rm P}^2}$$

Decays to bulk axions (if not eaten by anomalous U(1)s):

$$\Gamma_{\phi \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\phi}^3}{M_{\rm P}^2}$$

Decays to local closed string axions (if not eaten by U(1)s or lifted by NP effects):

$$\Gamma_{\phi \to a_{\rm loc} a_{\rm loc}} = \frac{9}{16} \frac{1}{48\pi} \frac{m_{\phi}^3}{M_{\rm P}^2}$$

Subleading volume decays

Decays to gauge bosons: Tree-level: $f_a = S + h_a T_{vs}$ (independent of T_b) – Loop level: $\left(\frac{\alpha_{vs}}{4\pi}\right) \ln \mathcal{V} \Rightarrow$ loop suppressed decay width

$$\Gamma_{\phi \to A^{\mu} A^{\mu}} = \lambda \left(\frac{\alpha_{\rm vs}}{4\pi}\right)^2 \frac{m_{\phi}^3}{M_{\rm P}^2}$$

Decays to other visible sector fields: mass suppressed decays to matter scalars, fermions, gauginos and Higgsinos (commonly denoted as ψ):

$$\Gamma_{\phi \to \psi \psi} \simeq \frac{M_{\text{soft}}^2 m_{\phi}}{M_{\text{P}}^2} \ll \frac{m_{\phi}^3}{M_{\text{P}}^2}$$

Decays to local open string axions θ : ($C = \rho e^{i \theta}$ with $\langle \rho \rangle \neq 0$):

$$\mathcal{L} \supset \left(rac{\langle
ho
angle}{M_{
m P}}
ight)^2 \phi heta \Box heta$$

suppressed by tiny axion mass of the axion and $(\langle \rho \rangle / M_{\rm P})^2 \simeq \xi \sim 1/\mathcal{V} \ll 1$

Axions in sequestered models

- Unsuppressed decays to bulk and local closed string axions can cause problems with DR overproduction ⇒ constraints on hidden sector model building
- In globally consistent chiral brane models in explicit compact CYs these axions tend to be eaten up by anomalous U(1)s due to consistency reasons \Rightarrow no DR overproduction!

Two options for QCD axion:

Closed string QCD axion

- 1. In dP singularities all local closed string axions are eaten up
- 2. Focus on singularities more complicated than dP
- 3. A local closed string axion left over with $f_{a_{\rm loc}} \simeq M_s/\sqrt{4\pi} \simeq 10^{14}~{\rm GeV}$
- 4. Needs to be diluted by ϕ decay or tune initial misalignment angle
- 5. a_{loc} should not cause any problem with DR overproduction

Open string QCD axion

- 1. The phase θ of a matter field ϕ can be the QCD axion
- 2. Subleading ϕ decay to $\theta \Rightarrow$ No DR production
- 3. D-terms: $V_D \simeq g^2 \left(|\phi|^2 \xi \right)^2$ with $\xi = \tau_{\rm vs} / \mathcal{V} \Rightarrow f_a = \langle |\phi| \rangle = \sqrt{\xi} \simeq \langle \sqrt{\tau_{\rm vs}} \rangle M_s$
- 4. Subleading F-terms: $\langle \tau_{\rm vs} \rangle = \mathcal{V}^{-2\alpha} \ll 1$ with $0 < \alpha < 1 \Rightarrow f_a = \langle |\phi| \rangle \simeq M_s / \mathcal{V}^{\alpha}$
- 5. For $\alpha = 1/2$, one has $f_a \simeq 10^{11} \text{ GeV} \Rightarrow \text{OK}$ for DM

Non-thermal dark matter from ϕ decay

Non-thermal DM produced from ϕ decay with $\Gamma_{\phi} = \frac{c}{2\pi} \frac{m_{\phi}^3}{M_{P}^2}$

 ϕ decays when $H \sim \Gamma_{\phi}$ and reheats the universe to a temperature

$$T_{\rm rh} = c^{1/2} \left(\frac{10.75}{g_*}\right)^{1/4} \left(\frac{m_{\phi}}{50 \,{\rm TeV}}\right)^{3/2} T_{\rm BBN}$$

 ϕ decay dilutes thermal DM by a factor of order $(T_{\rm f}/T_{\rm rh})^3 \gtrsim 10^6$ \Rightarrow need DM production from modulus decay:

$$\frac{n_{\rm DM}}{s} = \min\left[\left(\frac{n_{\rm DM}}{s}\right)_{\rm obs} \frac{\langle\sigma_{\rm ann}v\rangle_{\rm f}^{\rm th}}{\langle\sigma_{\rm ann}v\rangle_{\rm f}} \left(\frac{T_{\rm f}}{T_{\rm rh}}\right), Y_{\phi} \mathrm{Br}_{\rm DM}\right]$$

where $\langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \simeq 3 \times 10^{-26} {\rm cm}^3 \, {\rm s}^{-1}$ is the value needed in the thermal case

$$\left(\frac{n_{\rm DM}}{s}\right)_{\rm obs} \simeq 5 \times 10^{-10} \left(\frac{1 \,\,{\rm GeV}}{m_{\rm DM}}\right) \qquad \text{and} \qquad Y_{\phi} \equiv \frac{3T_{\rm rh}}{4m_{\phi}} = \frac{0.9}{\pi} \sqrt{\frac{c \, m_{\phi}}{M_{\rm P}}}$$

 ${
m Br}_{
m DM}$ is the branching ratio for ϕ decays into *R*-parity odd particles which decay to DM

Non-thermal DM scenarios

DM abundance:

$$\frac{n_{\rm DM}}{s} = \min\left[\left(\frac{n_{\rm DM}}{s}\right)_{\rm obs} \frac{\langle\sigma_{\rm ann}v\rangle_{\rm f}^{\rm th}}{\langle\sigma_{\rm ann}v\rangle_{\rm f}} \left(\frac{T_{\rm f}}{T_{\rm rh}}\right), Y_{\phi} \mathrm{Br}_{\rm DM}\right]$$

First term on RHS side \Rightarrow **Annihilation Scenario**

1. DM particles produced from ϕ decay undergo some annihilation

2. Need
$$\langle \sigma_{\rm ann} v \rangle_{\rm f} = \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} (T_{\rm f}/T_{\rm rh})$$

3. Since $T_{\rm rh} < T_{\rm f}$, need $\langle \sigma_{\rm ann} v \rangle_{\rm f} > \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \Rightarrow$ Wino/Higgsino DM

- **Second term on RHS side** \Rightarrow **Branching Scenario**
 - 1. DM annihilation is inefficient and DM abundance is produced form ϕ decay
 - 2. Need $\langle \sigma_{\rm ann} v \rangle_{\rm f} < \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} (T_{\rm f}/T_{\rm rh})$
 - 3. Always the case for $\langle \sigma_{\rm ann} v \rangle_{\rm f} < \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \Rightarrow$ Bino DM
 - 4. Can also happen for $\langle \sigma_{\rm ann} v \rangle_{\rm f} > \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th}$ if $T_{\rm rh}/T_{\rm f}$ is too small

Observational constraints

Fermi results place tight constraints on the 'annihilation scenario'

- Limits from dwarf spheroidal galaxies:
 - 1. $T_{
 m f} \lesssim 30 \, T_{
 m rh}$ for $m_{
 m DM} > 40 \; {
 m GeV} \Rightarrow T_{
 m rh} > 70 \; {
 m MeV}$
 - 2. For $m_{\rm DM} < 40$ GeV, need $\langle \sigma_{\rm ann} v \rangle_{\rm f} < \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th}$, if DM annihilates into $b\bar{b}$ \Rightarrow 'annihilation scenario' cannot work in this case
 - \Rightarrow the 'branching scenario' is the only option for $m_{\rm DM} < 40~{\rm GeV}$
- Since $5 \times 10^{-3} \lesssim Br_{DM} \lesssim 1$, (lower bound set by three-body decay of ϕ into *R*-parity odd particles), need $Y_{\phi} \lesssim 10^{-8}$ to obtain correct DM abundance
- \checkmark For $m_{\phi}\simeq 5 imes 10^{6}$ GeV, this requires $T_{
 m BBN}\lesssim T_{
 m rh}\lesssim 70$ MeV
- \Rightarrow two interesting regimes for $T_{\rm rh}$:
- 1. Annihilation scenario for $T_{\rm f}/30 \lesssim T_{\rm rh} < T_{\rm f}$;
- 2. Branching scenario for $T_{\rm BBN} \lesssim T_{\rm rh} \lesssim 70$ MeV.

Annihilation Scenario

- ${}$ High $T_{
 m rh}$ regime: $T_{
 m f}/30 \lesssim T_{
 m rh} < T_{
 m f}$
- ϕ decays mainly to Higgses with $c = Z^2/12$ $\Rightarrow T_{\rm rh} \simeq 0.8 Z$ GeV for $m_{\phi} \simeq 5 \times 10^6$ GeV \Leftrightarrow TeV-scale SUSY
- Focus on cases where bulk axions are removed from the spectrum
 - 1. QCD axion is a local closed string mode $a_{\rm loc}$ with $f_a \sim 10^{14} {
 m GeV}$
 - $\phi \to a_{\rm loc} a_{\rm loc}$ is a leading decay channel \Rightarrow suppress $\Delta N_{\rm eff} \simeq 1/Z^2$

 - Reheat temperature larger than QCD scale: $T_{\rm rh} \simeq 1 \, {\rm GeV} > \Lambda_{\rm QCD}$ ⇒ axion cold DM is not diluted ⇒ tune initial misalignment angle or $a_{\rm loc}$ eaten up by an anomalous U(1) (QCD axion is then an open string mode)
 - Multicomponent DM (Wino/Higgsino + closed string axions)
 - 2. QCD axion is an open string mode θ with $f_a \simeq 10^{11-12}$ GeV:
 - **9** $\phi \rightarrow \theta \theta$ is a subleading decay channel \Rightarrow No DR is produced
 - Seheat temperature larger than QCD scale \Rightarrow axion cold DM is not diluted
 - but f_a is intermediate \Rightarrow No need to tune initial misalignment angle
 - DM can be multicomponent (Wino/Higgsino + open string axions)

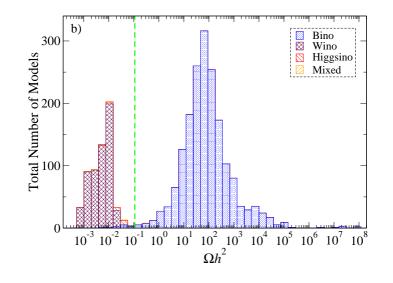
Branching Scenario

- ▶ Low $T_{\rm rh}$ regime: $3 \, {
 m MeV} \lesssim T_{\rm rh} \lesssim 70 \, {
 m MeV} \Rightarrow$ very small modulus decay width
- If QCD axion is a closed string $\Rightarrow Z \ge \sqrt{2}$ to avoid DR problems $\Rightarrow T_{\rm rh} \gtrsim 1$ GeV
- \checkmark Lower $T_{\rm rh}$ for smaller values of $m_{\phi} \Rightarrow M_{\rm soft} \ll 1$ TeV
- Solution Way-out: focus on cases where closed string axions are removed by anomalous U(1)s \Rightarrow QCD axion is an open string which does not cause any DR problem
- $T_{\rm rh} \ll \Lambda_{\rm QCD} \Rightarrow \phi \text{ decay dilutes axion oscillations} \Rightarrow {\rm negligible QCD axion DM}$
- Two ways to lower the reheat temperature:
 - 1. Z = 0 if Giudice-Masiero term forbidden by some symmetries \Rightarrow leading decay channel to gauge bosons is loop-suppressed
 - 2. $Z \simeq 0.1$ in the absence of symmetries forbidding ϕ decays to Higgses

Branching Scenario

Two cases:

1. Z = 0


- Loop-suppressed decay to gauge bosons via a two-body final state: $c = \lambda \frac{\alpha_{vs}^2}{8\pi}$
- If $\lambda \simeq 1$, $\alpha_{\rm vs} \simeq 1/137$, and $m_{\phi} \simeq 5 \times 10^6 \text{ GeV} \Rightarrow T_{\rm rh} \simeq 4 \text{ MeV} \Rightarrow Y_{\phi} \simeq 6 \times 10^{-10}$
- Gauginos produced in three-body decays of the modulus (ϕ → 1 gluon + 2 gluinos)
 with Br_{DM} ~ 5 × 10⁻³
- $Br_{DM} \simeq 5 \times 10^{-3} \Rightarrow$ DM abundance matches observed value for $m_{DM} \simeq 165$ GeV
- ${}$ Keep m_{ϕ} fixed at $m_{\phi} \lesssim 2 imes 10^7$ GeV (to get TeV-scale SUSY) and vary λ
- \checkmark $T_{\rm rh} \gtrsim 3 \; {\sf MeV} \Rightarrow \lambda \gtrsim 0.01$ and in turn $m_{
 m DM} \lesssim 900 \; {\sf GeV}$

2. $Z \simeq 0.1$

- $\ \, {} { \ \, { \ \, { \ \, { \ \ \, { \ \, } } } } } } } } } } } } } } } } m_{\rm m_{\rm m_{\rm m_{\rm M}}}}} \simeq 5 \times 10^6} \, {\rm GeV} \Rightarrow T_{\rm rh}} \simeq 80 \, {\rm MeV} \Rightarrow m_{\rm DM}} \simeq 10 \, {\rm GeV}} }$
- \checkmark Larger $m_{\rm DM}$ requires smaller Z keeping m_{ϕ} fixed to get low-energy SUSY

Thermal dark matter and baryogenesis

- Thermal DM gets diluted: good since not very generic model-wise!
- Simplified MSSM version: SUGRA with 19 parameters [Baer, Box, Summy]

- Also any previous matter-antimatter asymmetry gets diluted!
 - Welcomed effect for Affleck-Dine baryogenesis which can be too efficient
 - If no asymmetry left over after ϕ decay \Rightarrow Can address baryon-DM coincidence
 - Co-genesis of DM and baryogenesis from the moduli decay in the presence of new O(TeV) coulored particles with *B* and *CP*-violating couplings [Allahverdi,Dutta,Sinha]

Conclusions

- Sequestered LVS models:
 - Superpartner spectrum in the TeV range
 - Good inflationary scenarios
 - Solution Non-thermal DM from ϕ decay which increases DM parameter space
 - So moduli-induced gravitino problem since $m_{3/2} \simeq 10^{10} \, \text{GeV} \gg m_{\phi} \simeq 5 \times 10^6 \, \text{GeV}$
- **9** Two regimes for $T_{\rm rh}$ depending on ϕ couplings:
 - 1. 'Annihilation scenario' for high $T_{\rm rh} \simeq 1~{\rm GeV}$
 - ϕ decays mainly to Higgses
 - Axionic DR overproduction avoided either by anomalous U(1)s or by suitable couplings in the Giudice-Masiero term
 - Non-thermal DM: Wino/Higgsino with $m_{\rm DM} > 40$ GeV + QCD axion
 - 2. 'Branching scenario' for low $T_{\rm rh} \simeq 10 \; {\rm MeV}$
 - $\bullet \phi$ decays mainly to gauge bosons (or if the decay to Higgses is suppressed)
 - QCD axion can only be an open string mode diluted by ϕ decay since $T_{
 m rh} < \Lambda_{
 m QCD}$
 - Soth over and under-abundance DM scenarios can be accommodated
 - Solution Bino DM mass can vary from $\mathcal{O}(\text{GeV})$ to $\mathcal{O}(\text{TeV})$