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Mid to late 90s: a sense of unity and optimism



Prologue




Prologue

Post mid 2000s: full of uncertainty!



Motivation

e |0°%vacua or not, need to have control of quantum corrections (in
gs and ) to understand the vacuum structure of string theory

® Some key issues in particle physics and cosmology are sensitive to
Planck suppressed operators (c.g., gravity mediated SUSY, inflation,..).

® Non-perturbatively generated and higher dim. operators may explain
small #s in Nature (e.g.,Yulkawa/flavor hierarchies, v-masses, u-term).



Summary of Our Work

® A modest attempt to compute exact results on quantum
corrected EFT of string compactifications (GHSS):

. Garcia-Etxebarria, H. Hayashi, R. Savelli, GS, JHEP 1303, 005 (201 3).

. Garcia-Etxebarria H. Hayashi R. SaveIIi__

® Make use of string dualities to compute exact in gs (albeit
perturbatively exact in &) Kahler potential in String/F-theory.

® See also Savelli’s parallel talk on Tuesday.



F-theory

Non-perturbative formulation of 1IB string theory

SL(2,Z) symmetry on axiodilaton T=Co + i e® = geometrize T as
complex structure of a two-torus

Vo

Aspects of F-theory EFT obtained so far have not fully exploited
the geometrical nature of F-theory to describe non-perturbative
physics; non-perturbative symmetries not manifest.

Geometric interpretation of quantum corrections in
terms of Gopakumar-Vafa invariants; SL(2,Z) symmetry manifest.



Moduli Stabilization

Perturbative &’ corrections to K have played a key role in moduli
stabilization, e.g,

O (a’?) correction to K was heavily used.

O (g2 &’'?) corrections to K were found for some N=1,2 toroidal
orientifolds, cancellations in V (“extended no-scale”)

We found an exact in gs and all orders in &’ generalization of these
results.

Generalization is particularly important for moduli stabilization in
F-theory GUTs as strong gs coupling effects are invoked.



Summary of Strategy

® Consider a particular N=2 model: F-theory on K3 x K3
= obtain exact in g, perturbatively exact in &’ Kahler potential

= more constraining than N=1but yet exhibit similar features

= pattern of corrections N=4—N=2 as guide for N=1 case.

® Extensive use of string dualities and the c-map:

F-theory on F-theory on
K3 x K3 X3 x T?
A A

| lift | Lift
IIB on Type I on Het on ITA on ©™@P  1IB on
<> <> <« <>
K3XT2/Z2 K3XT2 KSXTQ X3 X3



F-theory Effective Action



Effective Action

F-theory is an exact completion (in gs) of lIB but is perturbatively
defined in &’. At tree-level in &’: K=Krk+ K.,

where Krx = —-3logVcy, , Ke=— log/ Oy A Qy,
CYy4

In the weakly coupled IIB orientifold limit (Sen’s limit):

. = Js 2
K. = —log(ImSy) — lo z/ O3 A Q3 + — —Kp7 + O(g;
g(ImSp) — log oy, BNt Jov 05 A 0 7+ O(95)

Kc contains all gs corrections sum in an SL(2,Z) invariant way.

Physics depends on intrinsic fibration structure! => Labels
(monodromies) of 7-branes change, not their mutual relations.

Target space duality in M-theory when CY4 is trivially fibered but
this symmetry holds generally for elliptically fibered CY4.



SL(2,2)

Strong-weak coupling transformation: Local Lagrangian?

Gauge couplings of gauge fields from KK reduction of bulk
SUGRA or 7-branes do not change under SL(2,Z), e.g.,

1 Vol(4-cycl —~
—— ~ ol{d-cycle) = Vol(4-cycle),
9y M Js

only Einstein frame volumes are involved, SL(2,Z) inv.

We shall verify that each &X’-tower of corrections displays an
SL(2,Z) symmetry for F-theory on K3xK3.

More general than the case in as
fibration is non-trivial; yet enjoy the non-renormalization
theorems for N=2, and admits multiple dual descriptions.



F/M-theory Picture

S % St
\ 57 7

- Reduce M to llA along A.

=== . T-dualize IIA to IIB along B.

s - Take the v°=Vol(T?%)—0 limit.
A

= Type IIB string theory with varying axio-dilaton.

- 1IB metric in Einstein frame and 10d Poincaré r = (v°)73/% |
- The finite quantity vy = Vov'v5; is the 2-cycle size in string units.

® M-theory scale is small compared to string length 1,,/1, = (v°)/*.

= | ook for higher derivative corrections to | |d sugra which survive
the F-theory limit v =Vol(T?)—0.



Our Model & Its Heterotic Dual



Our Model

e Consider Type IIB orientifold on K3 x T%/Z;

® 4 Fixed points: positions of 4 O7-planes wrapping R x K3
o N=2, D=4 Compactification:

“* Vector multiplets:

» 3 bulk: axio-dilaton (S), K3 volume (T), T2 cplx str. (U).
» |6 brane: transverse positions of D7-branes (C)).
» No D3-moduli (16 rigid, space-time-filling, “half” D 3s).

% Hypermultiplets: complex structure of K3 and Kahler
modulus of T2

® Focus on quantum corrections to the metric of the vector
multiplet moduli space (a Special Kahler manifold).



Duality Dictionary

We computed such corrections by following the duality

S-duality T-duality
Heterotic < Type 1 < Type I

Heterotic & Type | are a strong-weak coupling dual-pair in 10d:

H 1
¢10 — —¢107
GH = ¢~ %0GL,

Upon further T-duality, the vector moduli space gets mapped to:

( H B ( I’ / )
Su = B*+ie **0Vol(T? x K3)" Ty = Cy + ie #10Vol(K3)!
K3
Ty — / Bys + iVol(T?) L
T2 Sy = Cy—+1e P10
Git +1iy/GI, 7
Ug = ke T L Up = Us
' G44 . 7 7 1 f4l
Ay = UgA, — AL (16 Wilson lines) C; = Uppy—ps (16 D7 positions)
U J U J

5-brane instantons & worldsheet instantons in heterotic become
D3 instantons and D(-1) instantons in Type I'.



Threshold Corrections

Special Kahler geometry (N=2 prepotential):
K = —log i [2]—" —2F =) (¢% = ¢%) (04 F + 3¢af)]

Use CFT techniques to compute all &’ corrections in heterotic dual
by going to orbifold limit (2-cycle volumes in hypers.)

= Kahler potential for Type |IB orientifold, exact in g;

First, ignore the Wilson Lines:
Fu (S, Tu,Un) = SuTuUy + h(Twu, Uy)
R 1

exact in X', perturbatively exact in g;.

SH—SH + A is an exact symmetry in perturbation theory. Fy (and Sh)
has no perturbative corrections beyond one loop in gs=1/Im Sn.



Threshold Corrections

® Prepotential for Type lIB Orientifold:
F(S,T,U)=STU + h(S,U),

T=T+ %&g@zjh(S, U).
exact in g=1/Im S, perturbatively exact in 0’2 = I/ImT.

® |n the regionImS>Im U

i | : 154 U3
h _ I 2mi(S—U) Li 2mi(kSH+LU) el -~
(S,U) ) 13 (e ) + k,zl;() c(kl)Lis (e ) + 27T4C(3) + 19
(k,1)#(0,0)
. = 2" = n EeEa
Where Liy,(2) = Z o Z c(n)z" = n2d (2)

n=1 n=—1

S, U interchanged when Im U > Im S.



Threshold Corrections

Kahler potential is invariant under shift of F (also h) by a polynomial
at most quadratic in @2 with real coefficients.

Ambiguity in h is related to non-trivial monodromies at special
regions of moduli space.

h develops co-dim. |,2 singularities due to enhanced gauge symmetry.

Classical duality group is modified, but K should be unaffected.



Perturbative &’ Corrections

® Expand the log to get perturbative &’ corrections to K:

K(S,T,U) = K

KOs T.U) = —

KM (S, T,U) = —

— 1
S, TU) + Y KM, T,U),

n=1

log [i(S — S)(T ~ T)(U ~ )] .

(—1)" [ 2h — 2h B ash—l—agﬁ B 8Uh—|—8(7il
(T—T)” (S—S)(U—U) U—-U S-S

1 - n
~5(@sduh - 858Uh)] .

® Only (gs &’)2" terms survive since 9sh — 0 exponentially for S —s ioo

e o 3term of BBHL

is absent since y (K3 xT?)=0.

® Odd powers of gsare absent as open string moduli are frozen.



Perturbative &’ Corrections

Kahler modulus and axio-dilaton mix at &’ %2 order (n=1):

¢w.U) €= lim 22 5h— o5k,

KO — _ 5 _
(T—T)(S—S) S—ico U —U

agrees with |-loop open string computation

Such corrections come from (i) KK exchange between D7s and
non-mobile D3s, or (ii) Mobius amplitude between parallel D7s.

(I/ImT)?2 (1/Im S)° correction which comes from exchange of
strings wound around the intersection of D7s is absent as two D7s
either do not intersect or coincide, and K3 has no |-cycle.

At each perturbative &’ order, the Kahler potential is inv. under
0(2,2,7) = SL(2,Z)s x SL(2,Z)y X Zo

Generalized to include Wilson lines & checked SL(2,Z) invariance.



Summary of Corrections

»

e~ 1/9 @€
v Terms non-perturbative in gs from D(-1) instantons.
9:"~- O
1 "\ 2 . .
i ® v Only (gs ®’)“" terms survive at perturbative level
% T ® v 3 term of BBHL is absent since ¥ (K3 x T2) = 0.
g9 T O
24 @ v No odd powers of gs, as open string moduli are frozen.
NQ—F—t—"F—F"
/ (O/)2 (0/)4 (a/>6 (0/)8 (&/)10

—~
L

~—

@)

Non-perturbative in &’ corrections are not included in this analysis:

* WS & DI instantons are absent due to orientifold projection.
® ED3 wrapping T? x (2-cycle of K3) correct hyper. moduli sp. metric.

¢ SL(2,Z) invariant ED3 branes wrapping K3 (more later) not included here.



Non-perturbative &’ Corrections

® ED3 wrapping K3 are non-perturbative in both &’ and g;.
® Their contribution is trivially SL(2,Z) invariant.

® The exact prepotential:

~ 16

~A A T ing T A i A 1\ 2mimT
IZSTU_EZ;(C) +h(S,U,C)+%:Am(5>U,C)€

® The A-factor can be computed from the Type IIA dual on a
CY3 which admits a K3 fibration over S2.

® D3 instantons—worldsheet instantons wrapping S? on the lIA
side. Partial results were obtained in



Lift to F-theory



Heterotic Picture

Type IIB orientifold on K3 x T?/Z; is related by two T-dualities to
the BSGP model

The BSGP model is S-dual to heterotic SO(32) theory w/o vector
structure , though its maximal gauge group is U(16).

Heterotic SO(32) without vector structure is dual to heterotic Eg x
Es with instanton embedding (12,12).

N/

% At generic points of the hypermultiplet moduli space, only U(1)*is
left, corresponding to SH, TH,UH,and the graviphoton.

Heterotic SO(32) with vector structure is dual to heterotic Eg x Es
with different instanton embedding.

N/

** Not enough instantons for complete Higgsing to U(l)s. Need to turn
on WLs, e.g., (24,0) instanton embedding requires 8 VLs.



Heterotic Picture

We focus on the vector multiplet moduli space.

When WLs are turned off, prepotential of the theory w/o vector
structure matches that w/ vector structure.

This insensitivity to instanton embedding (and hence 4D gauge
groups) can be explained using the relation to SUSY index
.We also showed this by explicit computation.

Expressions for heterotic SO(32) and EsxEg with general instanton
embeddings & WLs can be found in



F-theory Picture

8D duality: Heterotic on T? = F-theory on K3
Heterotic on K3 x T2 = F-theory on K3 x K3
Our model actually admits more F-theory duals.

If the heterotic K3 admits an elliptical fibration over P!, we get an
F-theory dual on X3 x T? where X3=K3 fibration over P

= Same X3 on which the dual llA theory compactified

= Base of X3as an elliptical fibration is an Hirzebruch surface Fy,
with n related to the instanton embedding of the dual heterotic
EsxEsg theory

® X3=WPi 2812(24) for (12,12) instanton embedding



Quantum Corrections

We checked that the classical vector multiplet moduli space
matches the classical moduli space of K3’

Quantum corrections = Quantum moduli space of K3’.
» Factorization destroyed but SK-geometry preserved.

|dentify BPS objects in M-theory which generate the corrections
found. Recall the M-theory definition of F-theory:

T-duality circle St

>
L

M-theory circle Sm




Quantum Corrections

\/

** Non-perturbative gs corrections: D(-1) instantons in [IB = DO0-brane
in lIA looping along St = KK particle in | ID with non-trivial pm & wr.

» For trivial fibration: higher derivative corrections to | |1D SUGRA

— Contribute to R* coupling = o3 correction of BBHL
» Non-trivial fibration: contributions already at order &2

» For these Im corrections to stay finite in the F-theory limit, they should
appear as powers of [3,/v/vg because of the relation:

I /ls = (v9)"/*

» A subset of higher derivative corrections to | ID SUGRA (F-theory limit)



Quantum Corrections

\/

% Perturbative gs corrections when combined with the non-
perturbative ones lead to SL(2,Z) invariant sets of gs corrections for

each &’ tower. This suggest:
» | 1D supergravitons with non-trivial wrbut no puy

» | I D supergravitons with non-trivial wy, and possibly pr

Being loops of |-cycle of the fiber, these sources should generate
corrections proportional to [3,/1/vo , thus survive the F-theory limit.



Explicit Computation



Explicit Computation

® We have identified the BPS objects in M-theory responsible for

the corrections to the vector multiplet moduli space metric for
F-theory on K3xK3’.

® Direct Schwinger-loop calculation on K3’ along the lines of
is hard, due to non-trivial fibration.

® We make use of other F-theory duals to bypass this difficulty.



Chain of Dualities

F-theory on F-theory on
K3 x K3 X3 x T?
A A
i lift i lift
IIB on Type I on Het on ITA on ©™aP — 1IB on
<> D S D — D e
K3 x T?/Zs K3 x T? K3 xT? X3 X3

® Swapping the role of elliptic fiber of X3and F-theory fiber

= Hypermultiplet moduli space of a braneless F-theory
= M-theory method to compute corrections.

® However, this procedure gives more corrections than needed!
4 |IA vector multiplet moduli space metric has only &’ corrections.
4 IB hypermultiplet moduli space receives both &’ & g corrections.
= Extract tree-level in gs part of Schwinger-loop computation

(Note gs here is neither gs nor &’ of the original F-theory on K3xK3!)



M-theory Computation

Hypermultiplet moduli space of F-theory on X3 x T?

D-instantons < D-particles via c-map

Compute corrections to the hypermultiplet moduli space (equiv.
Einstein term (~R) in 3d effective action)

D1/D(-1) instantons in |[IB on CY

1} c-map

R
D2/DO particles in I1A on CY x S " Qf
)

M2 particles (and gravitons) in M-th on CY X T?



M-theory Computation

® Compute Schwinger-loops for X3 =WP | 28,12 (24)

1
Filass = 6 RapBy tatpty,
PO SPSR  —
pert = T (2 )3 ()32 X3 mr £’

(m,n)#(0,0)
i 7312 | | |
]:non—pert = 2 ; ng Y 62mda (mca+nbo+ilmrT+n|ja)
/2 Z a Z 3
2(2m)3(12) 7 (2 (0.0) imT + nl

» Kuapy = classical intersection # of X3
» ndo = genus-zero Gopakumar-Vafa invariants of X3

P Co, bo, jo = zero modes of the RR 2-form, the B-field, & the Kahler
form expanded in a basis of H'!'(X3 Z)

® Displays SL(2,Z) for each perturbative &’ tower; also contains
non-perturbative &’ corrections again in SL(2,Z) inv. manner.



Final Result

To derive corrections to the vector multiplet moduli space metric
of the original F-theory on K3xK3, consider the limit:

gs — 0, 1i.e, T —00

Matches with the heterotic computation. I[dentify:

1

— Uk —hl—k = c(lk)

Counting rational curves via modular forms

c(lk) agree with GV invariants in

Given GV invariant for the O-class is the Euler number:

X (X3)
2

GV invariants = non-perturbative (in gs) generalization of the
BBHL term (albeit here the &’ corrections are of order «‘?).



Generalizations

® To generalize this result to include 7-brane moduli C!, one
considers X3 with the right number of vector multiplet.

® For example, with 8 C'switched on, use X3 =WHP, 122842 (84) as
Frector muttiplet. should be insensitive to instanton embedding.

® Repeat the Schwinger-loop computation with a different set of
topological invariants.



Summary

Computed the exact in gs, perturbatively exact in &’, vector multiplet
moduli Kahler potential /K of an N=2 F-theory model.

Provided an M/F-theory interpretation of corrections to the Kahler
potential and identified the contributing BPS states.

Shown explicitly that quantum corrections to the Kahler potential
are SL(2,Z) invariant at each &’ level.

Shown that Kahler moduli & complex structure moduli start to mix
when perturbative &’ corrections are taken into account.

Provided a genuine (albeit indirect) M-theory computation.



Outlook

® A modest step towards the ambitious goal of computing exact results
for realistic compactifications.

® Even within the realm of N=2 compactifications, we have focussed on
the easiest half of the problem, i.e., vector multiplet moduli.

® |[t'd be interesting to apply the remarkable work on understanding
quantum corrections to the hypermultiblet moduli space,

in F-theory as we have done for the vector multiplet moduli.



Outlook

® The Holy Grail is to find non-pert. results for N<| compactifications.

® The pattern of corrections from N=4—N=2 that we found may serve
as a guide for further breaking to N=1. More concretely:

* Compute directly D-particle loops for non-trivial elliptic fibration

% Spontaneously breaking N=2—N=1| (e.g, by fluxes); sometimes inherit
structure of N=2 effective action. See, e.g.,

® More X’ corrections arise in N=1 String/F-theory vacua (albeit only
tree-level gsresult in )

® Any such progress would undoubtedly shed light on the vacuum
structure of string theory and its low energy descriptions.
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