Discrete gauge symmetries in flux compactifications

Mikel Berasaluce-González IFT-UAM/CSIC, Madrid

Based on:

M.B-G., P.G. Cámara, F. Marchesano, Á. M. Uranga; arXiv: 1211.5317

Discrete symmetries in SM/BSM

- Discrete symmetries are a key ingredient in SM and BSM
 - Symmetries preventing dimension 4 proton decay in the MSSM: R-parity, baryon triality...
 - Flavor symmetries to explain/reproduce quarks and lepton masses and mixings,...
- Quantum gravity does not like global symmetries.

Banks, Seiberg 2011

▶ Microscopic arguments in string theory.

Banks, Dixon '88

▶ General arguments in black hole evaporation.

Exact symmetries should be gauge.

Discrete gauge symmetries in 4d

Banks, Seiberg 2011

• The basic Lagrangian for a Z_p gauge symmetry is

$$(d\phi-pA)\wedge*(d\phi-pA)+\frac{1}{2}F\wedge*F \qquad \qquad \phi\sim\phi+1$$
 Axion

The gauge transformation is

$$A \to A + d\lambda$$
 , $\phi \to \phi + p\lambda$

Discrete gauge symmetries in 4d

Banks, Seiberg 2011

• The Lagrangian in the dual description is

$$\frac{1}{2}H \wedge *H + pB \wedge F + \frac{1}{2}F \wedge *F \qquad H = dB = *d\phi$$

The gauge transformation is

$$B \to B + d\Lambda$$
 , $V \to V + p\Lambda$

• Thus, the Z_p discrete symmetry can be read from the $B \wedge F$ coupling.

Discrete gauge symmetries in 4d

Banks, Seiberg 2011

• The Lagrangian in the dual description is

$$\frac{1}{2}H \wedge *H + pB \wedge F + \frac{1}{2}F \wedge *F \qquad H = dB = *d\phi$$

$$dV = *dA$$

The gauge transformation is

$$B \to B + d\Lambda$$
 , $V \to V + p\Lambda$

- Thus, the Z_p discrete symmetry can be read from the $B \wedge F$ coupling.
- The objects charged under this symmetry are:
 - \triangleright Z_p-charged particles, which can be annihilated by instantons in sets of p.
 - \triangleright Z_p-charged strings, which can be annihilated by string junctions in sets of p.

Discrete gauge symmetries from flux compactifications

• In type II theory, B∧F arises from KK reduction of the 10d CS couplings

$$\int_{10d} H_3 \wedge F_p \wedge C_{7-p} \quad , \qquad \int_{10d} B_2 \wedge F_p \wedge F_{8-p}$$

- Charged strings and particles are given by branes wrapped on homologically nontrivial Z-valued cycles.
- They can decay in sets of p, due to processes allowed by the presence of fluxes (flux catalysis).

A simple example

• Consider type IIB compactified on X_6 with NSNS 3-form flux and only two 3-cycles α , β .

$$\int_{\alpha} \overline{H}_3 = p \quad , \quad \int_{\beta} F_5 = \hat{F}_2$$

• The B∧F coupling arises from

$$\int_{10d} \overline{H}_3 \wedge C_2 \wedge F_5 \rightarrow \int_{4d} p \, C_2 \wedge \hat{F}_2$$

- We get a Z_p discrete gauge symmetry.
- The charged objects under the Z_p are:
 - ▶ Particle: D3 on β .
 - ▶ Instanton: D5 on X6.

- Strings: D1 branes.
- ▶ Junction: D3 on α .

Freed, Witten 1999 Maldacena, Moore, Seiberg 2001

Non-Abelian discrete gauge symmetry from fluxes (generalities)

• In some configurations there can be several Z_p which may be non-commuting.

Non-Abelian discrete gauge symmetry from fluxes (generalities)

- In some configurations there can be several Z_p which may be non-commuting.
- This implies that strings associated to non-commuting elements g and h, when crossing each other, produce a new string stretching between them, associated to the commutator c=ghg⁻¹h⁻¹.

 Alford, Benson, Coleman, Lee, March-

Russell, Preskill, Wilczek '90s

g h g c=ghg-lh-l FI

Non-Abelian discrete gauge symmetry from fluxes (generalities)

- In some configurations there can be several Z_p which may be non-commuting.
- This implies that strings associated to non-commuting elements g and h, when crossing each other, produce a new string stretching between them, associated to the commutator c=ghg⁻¹h⁻¹.

 Alford, Benson, Coleman, Lee, March-

Russell, Preskill, Wilczek '90s

g h g c=ghg-ih-1 FI

- Microscopically, these new strings appear by the Hanany-Witten brane creation effect.
- The strings created in the crossing are finite in extent, but the theory must also contain stable infinite strings associated to c.

Non-Abelian discrete gauge symmetry from fluxes (example)

• Consider type IIA with 2-form fluxes compactified on $X_6=B_4\times T^2$, and introduce the T^2 I-cycles a and b, and two dual basis of 2-cycles $\{\Pi_k\}$ and $\{\Pi_k'\}$ in B₄. Define

$$\int_{\Pi_{k}} \overline{F}_{2} = p_{k} , \qquad \int_{a} H_{3} = \hat{F}_{2}^{a} , \qquad \int_{b} H_{3} = \hat{F}_{2}^{b}
\int_{\Pi_{k}' \times b} C_{5} = \hat{B}_{k} , \qquad \int_{\Pi_{k}' \times a} C_{5} = \hat{B}_{k}'$$

• The BF couplings arise from

$$\int_{10d} \overline{F}_2 \wedge H_3 \wedge C_5 \longrightarrow \int_{4d} \left(\sum_k p_k \hat{B}_k \wedge \hat{F}_2^a - \sum_k p_k \hat{B}_k' \wedge \hat{F}_2^b \right)$$

- Each of the two U(I) gauge factors is broken to a Z_p gauge symmetry with $p = \gcd(p_k)$.
- The charged objects under each Z_p are:
 - ▶ Particle: FI on a.
 - Instanton: D2 on a l. c. of $\Pi'_k \times b$.
 - String: D4 on $\Delta = \sum_k (p_k/p) \Pi_k' \times b$.
 - ▶ Junction: NS5 on $b \times \mathbf{B}_4$.

- ▶ Particle: FI on b.
- Instanton: D2 on a l. c. of $\Pi'_k \times a$.
- String: D4 on $\Delta' = \sum_k (p_k'/p') \Pi_k' \times a$.
- ▶ Junction: NS5 on $a \times B_4$.

• Crossing two 4d strings minimally charged under the two Z_p produces r FIs with

$$r = \Delta \cdot \Delta' = \sum_{k} \frac{p_k p_l}{p^2} \, \Pi'_k \cdot \Pi'_l$$

• The symmetry is a discrete Heisenberg group generated by T, T´ and C, with relations

$$T^p = T'^p = 1$$
 , $TT' = C^r T'T$

• The BF couplings associated to C are

$$\int_{10d} B_2 \wedge \overline{F}_2 \wedge F_6 \quad \to \quad \int_{4d} B_2 \sum_k p_k \hat{F}_2^k \qquad \qquad \int_{\Pi'_k \times a \times b} F_6 = \hat{F}_2^k$$

 \bullet This leads to a $\mathbf{Z}_{\mathbf{q}}$ symmetry with $q=\frac{\sum_k (p_k)^2}{p}$, which implies

$$C^q = 1$$

• When several kinds of fluxes are simultaneously present in a compactification, inconsistent configurations of Z_p -valued wrapped branes may naively arise.

- When several kinds of fluxes are simultaneously present in a compactification, inconsistent configurations of Z_p -valued wrapped branes may naively arise.
- Consider type IIB with NSNS and RR 3-form fluxes, and only two 3-cycles α , β .

$$\int_{\beta} F_5 = \hat{F}_2 \qquad \int_{\alpha}^{\overline{F}_3} \overline{F}_3 = p \; , \qquad \int_{\beta}^{\overline{H}_3} \overline{H}_3 = p' \int_{\alpha}^{\overline{F}_3} F_5 = \hat{F}_2' \\ \int_{4d} \left(p \, B_2 \wedge \hat{F}_2 \, - \, p' \, C_2 \wedge \hat{F}_2' \right) \\ \mathsf{Z}_{\mathsf{p}'}$$

- Particle: D3 on β.
- ▶ Instanton: NS5 on X6.
- String: fundamental strings.
- Junction: D3 on α .

- \blacktriangleright Particle: D3 on α .
- ▶ Instanton: D5 on X6.
- ▶ String: DI-branes.
- ▶ Junction: D3 on β .

- When several kinds of fluxes are simultaneously present in a compactification, inconsistent configurations of Z_p -valued wrapped branes may naively arise.
- Consider type IIB with NSNS and RR 3-form fluxes, and only two 3-cycles α , β .

$$\int_{\beta} F_5 = \hat{F}_2 \qquad \int_{\alpha}^{\overline{F}_3} = p \;, \qquad \int_{\beta}^{\overline{H}_3} \overline{H}_3 = p' \int_{\alpha}^{\overline{Dasgupta}, \, Rajesh, \, Sethi \, 1999}_{\text{Giddings, Kachru, Polchinski 2002}}$$

$$\int_{4d} \left(p \, B_2 \wedge \hat{F}_2 \, - \, p' \, C_2 \wedge \hat{F}_2' \right)$$

- Particle: D3 on β.
- Instanton: NS5 on X6.
- String: fundamental strings.
- Junction: D3 on α .

- Particle: D3 on α.
- ▶ Instanton: D5 on X6.
- ▶ String: DI-branes.
- ▶ Junction: D3 on β .
- Strings ending in junctions ending in instantons?

- When several kinds of fluxes are simultaneously present in a compactification, inconsistent configurations of Z_p -valued wrapped branes may naively arise.
- Consider type IIB with NSNS and RR 3-form fluxes, and only two 3-cycles α , β .
- In this configuration there is a tadpole of D3-brane charge given by

Dasgupta, Rajesh, Sethi 1999 Giddings, Kachru, Polchinski 2002

$$N_{\text{flux}} = \int_{\mathbf{X}_6} \overline{F}_3 \wedge \overline{H}_3 = pp' \quad \int_{\alpha} \overline{F}_3 = p , \quad \int_{\beta} \overline{H}_3 = p'$$

- The extra ingredients needed to cancel the tadpole also solve the above inconsistencies. We have several possibilities: anti-branes, orientifold planes...
- In the case of O3-planes, all flux-induced BF couplings are projected out, and therefore also strings ending on string junctions.
- However there is another set of discrete Z_p -valued brane wrappings that survive the orientifold projection: 4d strings with domain walls attached.

Unstable domain walls

- In addition to the charged strings, we can have 4d strings with p domain walls attached.
- Therefore, p domain walls are unstable against nucleation of a string loop, and the vacua separated by them must be equivalent.
- Flux quantization:

Two vacua separated by a domain wall wrapping a k-cycle differ in one unit of RR (6-k)-form flux along the (6-k)-cycle dual to the wrapped k-cycle. Because of nucleation of holes bounded by strings both vacua must be equivalent, so the flux is Z_p -valued.

D6-brane domain walls with F0 flux.

 Hole collisions: If a domain wall can decay via nucleation of different strings, holes can collide and lead to a single hole, crossed by a new 4d string.

D2-brane domain walls with F4 and H3 fluxes.

 Hole collisions: If a domain wall can decay via nucleation of different strings, holes can collide and lead to a single hole, crossed by a new 4d string.

D2-brane domain walls with F4 and H3 fluxes.

• Hanany-Witten effect:
The crossing of two strings
with non-commuting
monodromies associated to
broken generators of G and
commutator in H leads to the
creation of a new 4d string
with no domain wall attached.

D2-brane domain walls with H₃ fluxes

Summary

- We have seen that type II flux compactifications give rise to Abelian and non-Abelian discrete gauge symmetries.
- We have also studied the problems that may arise when several kinds of fluxes are simultaneously present in a compactification and how string theory avoids those inconsistent configurations.

Summary

- We have seen that type II flux compactifications give rise to Abelian and non-Abelian discrete gauge symmetries.
- We have also studied the problems that may arise when several kinds of fluxes are simultaneously present in a compactification and how string theory avoids those inconsistent configurations.

Thank you