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Discrete symmetries in SM/BSM

• Discrete symmetries are a key ingredient in SM and BSM

‣ Symmetries preventing dimension 4 proton decay in the MSSM: R-parity, 
baryon triality...

‣ Flavor symmetries to explain/reproduce quarks and lepton masses and 
mixings,...

• Quantum gravity does not like global symmetries.

‣ Microscopic arguments in string theory.

‣ General arguments in black hole evaporation.

• Exact symmetries should be gauge.

Banks, Seiberg 2011

Banks, Dixon ’88



Discrete gauge symmetries in 4d
Banks, Seiberg 2011

• The basic Lagrangian for a Zp gauge symmetry is

The gauge transformation is

by a D3-brane wrapped on x
4, x5, by the HW effect. The resulting symmetry is a dis-

crete Heisenberg group, with relations A
p = B

p = 1, AB = CBA, and C
p = 1. The

non-Abelianity is analogous to that of section 4.2 in [59] (see also [55] for an early 5d

realization), with the difference that in the present case the two Zp factors arise from

flux cathalysis, rather than from torsion (co)homology. The relation C
p = 1 follows

because the D3-brane 4d strings are associated to a Zp discrete symmetry induced by

the 3-form fluxes (in a way different from section 2.7, since it requires the presence of

non-trivial 1-cycles) through the following Chern-Simons term

�

10d

C4 ∧ (F3 ∧H3 + F 3 ∧H3) →
�

4d

p B̂2 ∧ (F̂2 + F̂
�
2) (C.5)

with B̂2 =
�
x4x5 C4, and 4d U(1) field strengths F̂2 =

�
x8 F3 and F̂

�
2 =

�
x9 H3.

�

X6

F 6 = p (C.6)

(dφ− pA) ∧ ∗(dφ− pA) +
1

2
F ∧ ∗F (C.7)
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A Field theory description of Abelian discrete gauge

symmetries

In this article we often look for particles and strings charged with respect to a Zp

discrete symmetry. Following [22] (see also [65] for an alternative viewpoint on dis-

crete gauge symmetries), the symmetry is usually identified from the presence of a 4d

coupling p B̂2∧ F̂2, between the U(1) field strength F̂2 and a 2-form B̂2 (in the normal-

ization that B̂2 is dual to a scalar with periodicity 1, and that the minimal U(1) charge

is 1). The Lagrangian for a Zp gauge theory can be described in terms of a scalar φ

(4d dual to B̂2) and a 1-form A1, with gauge invariance

A → A+ dλ , φ → φ+ pλ (A.1)

or in terms of the 2-form B̂2 and the dual 1-form V1, with gauge invariance

B → B + dΛ1 , V → V + pΛ1 (A.2)

To facilitate the identification of particles and strings that are charged under the dis-

crete symmetry, and objects annihilating them, we recall that [22]:

- Zp-charged particles arise from objects electrically charged under A1. They are

described by a line operator ei
�
L A1 , which creates a charged particle with worldline L.

- The instanton operator annihilating sets of p charged particles is the object whose

action contains a term linear in φ. The corresponding operator is

e−iφei p
�
L A1 (A.3)

where here L is a curve starting at the point P where the insertion of eiφ occurs. The

structure of (A.3) is required by the gauge invariance (A.1).

- Zp-charged strings arise from objects electrically charged under B̂2. They are

described by a surface operator ei
�
C B2 , creating a charged string with worldsheet C.

- The junction annihilating sets of p charged strings is the object coupling electri-

cally to V1, namely the “would-be” monopole of the original U(1) theory (which, since

the U(1) is Higgsed, are actually confined, with the Zp-charged strings playing as flux

strings). The corresponding operator is

e−i
�
L V1 ei p

�
C B2 (A.4)

where here C is a surface with boundary L. The structure of (A.4) is required by the

gauge invariance (A.2).
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�
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2
F ∧ ∗F (C.7)

φ ∼ φ+ 1 (C.8)
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Discrete gauge symmetries in 4d
Banks, Seiberg 2011

• The Lagrangian in the dual description is

The gauge transformation is

• Thus, the Zp discrete symmetry can be read from the B∧F coupling.

1

2
H ∧ ∗H + pB ∧ F +

1

2
F ∧ ∗F (2.5)

Before taking into account the periodicity (2.2), the value of k could be removed

by rescaling φ, and would not be relevant. The integer k is thus properly interpreted

as the winding number in the map between the S1 of U(1) gauge transformations e2πiα

(with α � α+1 due to charge quantization), and the S1 parametrized by the axion φ.

The fact that k is integer is a compatibility condition of the gauging by the U(1) with

the pre-existing discrete equivalence (2.2).

The gauging directly implements the field identification φ � φ + k. On the other

hand the discrete equivalence (2.2) corresponds to a ‘fractional’ 1/k U(1) gauge trans-

formation, namely a Zk gauge transformation. This perspective displays the close

relation of the discrete gauge symmetry with the underlying field identification in the

scalar manifold. More precisely, the discrete gauge symmetry is the group of field iden-

tifications in the scalar manifold modulo those already accounted for by the gauging.

This intuition is the key to the non-Abelian generalization in the coming sections.

Theories with discrete gauge symmetries have sets of (possibly massive) charged

particle states. These often provide a practical way to identify the discrete gauge

symmetry in a given theory. In the case of the above Zk theory, charge n particles with

worldline C are described as insertions of the line operator

Oparticle ∼ e
2πin

�
C A1 (2.6)

Their charge is conserved modulo k, since there are gauge invariant ‘instanton’ vertices

which create/annihilate sets of particles with total charge k,

e
−2πiφ

e
2πi k

�
C A1 = e

−2πiφ
Oparticle(s) (2.7)

describing an insertion e
−2πiφ at a point P , out of which a charge k set of particles

emerges along a worldline C (i.e. ∂C = P ). In many realizations, the above operators

are induced in the 4d action by effects e−Sinst , non-perturbative in some suitable cou-

pling, with Sinst = 2πiφ + . . . linear in the gauged axion. The overall U(1) charge of

Oparticle(s) is thus compensated by shifts of Sinst..

In addition, the theory contains Zk charged strings, described as the insertion of

operators along a worldsheet Σ

Ostring ∼ e
−2πi p

�
Σ B2 (2.8)

where B2 is the 2-form dual to φ, and p is defined modulo k. A charge n particle defined

by (2.6) suffers a Zk discrete gauge transformation, n → n + p, when moved around

5
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dV = ∗dA (C.10)
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Discrete gauge symmetries in 4d
Banks, Seiberg 2011

• The Lagrangian in the dual description is

The gauge transformation is

• Thus, the Zp discrete symmetry can be read from the B∧F coupling.

1

2
H ∧ ∗H + pB ∧ F +

1

2
F ∧ ∗F (2.5)

Before taking into account the periodicity (2.2), the value of k could be removed

by rescaling φ, and would not be relevant. The integer k is thus properly interpreted

as the winding number in the map between the S1 of U(1) gauge transformations e2πiα

(with α � α+1 due to charge quantization), and the S1 parametrized by the axion φ.

The fact that k is integer is a compatibility condition of the gauging by the U(1) with

the pre-existing discrete equivalence (2.2).

The gauging directly implements the field identification φ � φ + k. On the other

hand the discrete equivalence (2.2) corresponds to a ‘fractional’ 1/k U(1) gauge trans-

formation, namely a Zk gauge transformation. This perspective displays the close

relation of the discrete gauge symmetry with the underlying field identification in the

scalar manifold. More precisely, the discrete gauge symmetry is the group of field iden-

tifications in the scalar manifold modulo those already accounted for by the gauging.

This intuition is the key to the non-Abelian generalization in the coming sections.

Theories with discrete gauge symmetries have sets of (possibly massive) charged

particle states. These often provide a practical way to identify the discrete gauge

symmetry in a given theory. In the case of the above Zk theory, charge n particles with

worldline C are described as insertions of the line operator

Oparticle ∼ e
2πin

�
C A1 (2.6)

Their charge is conserved modulo k, since there are gauge invariant ‘instanton’ vertices

which create/annihilate sets of particles with total charge k,

e
−2πiφ

e
2πi k

�
C A1 = e

−2πiφ
Oparticle(s) (2.7)

describing an insertion e
−2πiφ at a point P , out of which a charge k set of particles

emerges along a worldline C (i.e. ∂C = P ). In many realizations, the above operators

are induced in the 4d action by effects e−Sinst , non-perturbative in some suitable cou-

pling, with Sinst = 2πiφ + . . . linear in the gauged axion. The overall U(1) charge of

Oparticle(s) is thus compensated by shifts of Sinst..

In addition, the theory contains Zk charged strings, described as the insertion of

operators along a worldsheet Σ

Ostring ∼ e
−2πi p

�
Σ B2 (2.8)

where B2 is the 2-form dual to φ, and p is defined modulo k. A charge n particle defined

by (2.6) suffers a Zk discrete gauge transformation, n → n + p, when moved around

5

A Field theory description of Abelian discrete gauge

symmetries

In this article we often look for particles and strings charged with respect to a Zp

discrete symmetry. Following [22] (see also [65] for an alternative viewpoint on dis-

crete gauge symmetries), the symmetry is usually identified from the presence of a 4d

coupling p B̂2∧ F̂2, between the U(1) field strength F̂2 and a 2-form B̂2 (in the normal-

ization that B̂2 is dual to a scalar with periodicity 1, and that the minimal U(1) charge

is 1). The Lagrangian for a Zp gauge theory can be described in terms of a scalar φ

(4d dual to B̂2) and a 1-form A1, with gauge invariance

A → A+ dλ , φ → φ+ pλ (A.1)

or in terms of the 2-form B̂2 and the dual 1-form V1, with gauge invariance

B → B + dΛ , V → V + pΛ (A.2)

To facilitate the identification of particles and strings that are charged under the dis-

crete symmetry, and objects annihilating them, we recall that [22]:

- Zp-charged particles arise from objects electrically charged under A1. They are

described by a line operator ei
�
L A1 , which creates a charged particle with worldline L.

- The instanton operator annihilating sets of p charged particles is the object whose

action contains a term linear in φ. The corresponding operator is

e−iφei p
�
L A1 (A.3)

where here L is a curve starting at the point P where the insertion of eiφ occurs. The

structure of (A.3) is required by the gauge invariance (A.1).

- Zp-charged strings arise from objects electrically charged under B̂2. They are

described by a surface operator ei
�
C B2 , creating a charged string with worldsheet C.

- The junction annihilating sets of p charged strings is the object coupling electri-

cally to V1, namely the “would-be” monopole of the original U(1) theory (which, since

the U(1) is Higgsed, are actually confined, with the Zp-charged strings playing as flux

strings). The corresponding operator is

e−i
�
L V1 ei p

�
C B2 (A.4)

where here C is a surface with boundary L. The structure of (A.4) is required by the

gauge invariance (A.2).

31

by a D3-brane wrapped on x
4, x5, by the HW effect. The resulting symmetry is a dis-

crete Heisenberg group, with relations A
p = B

p = 1, AB = CBA, and C
p = 1. The

non-Abelianity is analogous to that of section 4.2 in [59] (see also [55] for an early 5d

realization), with the difference that in the present case the two Zp factors arise from

flux cathalysis, rather than from torsion (co)homology. The relation C
p = 1 follows

because the D3-brane 4d strings are associated to a Zp discrete symmetry induced by

the 3-form fluxes (in a way different from section 2.7, since it requires the presence of

non-trivial 1-cycles) through the following Chern-Simons term
�

10d

C4 ∧ (F3 ∧H3 + F 3 ∧H3) →
�

4d

p B̂2 ∧ (F̂2 + F̂
�
2) (C.5)

with B̂2 =
�
x4x5 C4, and 4d U(1) field strengths F̂2 =

�
x8 F3 and F̂

�
2 =

�
x9 H3.

�

X6

F 6 = p (C.6)

(dφ− pA) ∧ ∗(dφ− pA) +
1

2
F ∧ ∗F (C.7)

φ ∼ φ+ 1 (C.8)

H = dB = ∗dφ (C.9)

dV = ∗dA (C.10)

References

[1] L. E. Ibanez and A. M. Uranga, “String theory and particle physics: An introduc-

tion to string phenomenology,” Cambridge, UK: Univ. Pr. (2012) 673 p

[2] M. R. Douglas and S. Kachru, “Flux compactification,” Rev. Mod. Phys. 79 (2007)

733 [hep-th/0610102].

[3] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, “Four-dimensional String

Compactifications with D-Branes, Orientifolds and Fluxes,” Phys. Rept. 445

(2007) 1 [hep-th/0610327].

[4] D. Martelli and J. Sparks, “G structures, fluxes and calibrations in M theory,”

Phys. Rev. D 68 (2003) 085014 [hep-th/0306225].

36

• The objects charged under this symmetry are:

‣ Zp-charged particles, which can be annihilated by instantons in sets of p.

‣ Zp-charged strings, which can be annihilated by string junctions in sets of p.



Discrete gauge symmetries from flux 
compactifications

• In type II theory, B∧F arises from KK reduction of the 10d CS couplings

symmetries relating vacua with different flux quanta. In section 7 we use dualities to

connect the flux-induced Zp charges to those appearing in compactification with torsion

(co)homology classes. In section 8 we offer some final remarks. To make the discussion

self-contained, appendix A reviews Zp gauge symmetries, and appendix B reviews

the Hanany-Witten and Freed-Witten like effects appearing in the text. appendix

C provides a brief discussion of flux-induced discrete gauge symmetries, including a

non-Abelian example, arising from KK U(1)’s in compactifications with isometries.

2 Discrete gauge symmetries from flux cathalysis

2.1 Generalities and flux cathalysis

We start the discussion considering wrapped branes that give rise to particles and

strings with Zp-valued charges. These signal the existence of discrete gauge symmetries,

which interestingly can be identified by the presence of BF couplings in the 4d theory,

c.f. appendix A. In type II models these couplings arise from KK reduction of the 10d

Chern-Simons couplings, which are or the form

�

10d

H3 ∧ Fp ∧ C7−p ,

�

10d

B2 ∧ Fp ∧ F8−p (2.1)

Here B2 and H3 denote the NSNS 2-form potential and its field strength, whereas Cn

and Fn+1 denote the RR n-form potential and its field strength, with n even or odd for

type IIA or IIB theories, respectively (and including the 0-form field strength F0, i.e.

massive IIA theory). Although the above two expressions are locally equivalent upon

integration by parts, we keep both for convenience.

In a compactification with non-trivial fluxes the above couplings lead to B∧F terms

in the 4d theory describing Zp discrete gauge symmetries. The Zp-valued particles

and strings charged under the discrete gauge symmetry are given by branes wrapped

on homologically non-trivial Z-valued cycles, yet they can decay in sets of p, due

to processes allowed by the presence of fluxes (dubbed ‘flux cathalysis’). Prototypes

of such processes are the decay of D-branes ending on a higher-dimensional brane

with non-trivial NSNS flux along its worldvolume [15], due to the Freed-Witten (FW)

consistency condition
1
, or the decay of fundamental strings on a Dp-brane with non-

trivial p-form flux along its worldvolume (as in the baryon vertex in [43]).

1Actually [14] considered the case of torsionH3, and the physical picture for generalH3 appeared in

[15]. Still, we stick to the widely used term FW anomaly / consistency condition, even for non-torsion

H3.

4

• Charged strings and particles are given by branes wrapped on homologically non-
trivial Z-valued cycles.

• They can decay in sets of p, due to processes allowed by the presence of fluxes 
(flux catalysis).



A simple example
• Consider type IIB compactified on X6 with NSNS 3-form flux and only two 3-

cycles α, β.

• The B∧F coupling arises from

• We get a Zp discrete gauge symmetry.

by a D3-brane wrapped on x
4
, x

5
, by the HW effect. The resulting symmetry is a dis-

crete Heisenberg group, with relations A
p
= B

p
= 1, AB = CBA, and C

p
= 1. The

non-Abelianity is analogous to that of section 4.2 in [59] (see also [55] for an early 5d

realization), with the difference that in the present case the two Zp factors arise from

flux cathalysis, rather than from torsion (co)homology. The relation C
p
= 1 follows

because the D3-brane 4d strings are associated to a Zp discrete symmetry induced by

the 3-form fluxes (in a way different from section 2.7, since it requires the presence of

non-trivial 1-cycles) through the following Chern-Simons term

�

10d

C4 ∧ (F3 ∧H3 + F 3 ∧H3) →
�

4d

p B̂2 ∧ (F̂2 + F̂
�
2) (C.5)

with B̂2 =
�
x4x5 C4, and 4d U(1) field strengths F̂2 =

�
x8 F3 and F̂

�
2 =

�
x9 H3.

�

X6

F 6 = p (C.6)

(dφ− pA) ∧ ∗(dφ− pA) +
1

2
F ∧ ∗F (C.7)

φ ∼ φ+ 1 (C.8)

H = dB = ∗dφ (C.9)

dV = ∗dA (C.10)

�

α

H3 = p ,

�

β

F5 = F̂2 (C.11)

The 10d CS coupling leads to the 4d BF terms

�

10d

H3 ∧ C2 ∧ F5 →
�

4d

pC2 ∧ F̂2 (C.12)
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‣ Strings: D1 branes.

‣ Junction: D3 on α.
‣ Particle: D3 on β.
‣ Instanton: D5 on X6.
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• In some configurations there can be several Zp which may be non-commuting.

• This implies that strings associated to non-commuting elements g and h, when 
crossing each other, produce a new string stretching between them, associated to 
the commutator c=ghg-1h-1.

• Microscopically, these new strings appear by the Hanany-Witten brane creation 
effect.

• The strings created in the crossing are finite in extent, but the theory must also 
contain stable infinite strings associated to c.
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Non-Abelian discrete gauge symmetry 
from fluxes (example)

• Consider type IIA with 2-form fluxes compactified on X6=B4×T2, and introduce the 
T2 1-cycles a and b, and two dual basis of 2-cycles {Πk} and {Πk´} in B4. DefineRR 2-form field strength, and define the 4d forms and flux quanta

�

Πk

F 2 = pk ,
�
a H3 = F̂

a
2 ,

�

b

H3 = F̂
b
2

�

Π�
k×b

C5 = B̂k ,
�
Π�

k×a C5 = B̂
�
k (4.1)

The 10d Chern-Simons term (2.1) descends in the presence of this backrgound to 4d

BF couplings as

�

10d

F 2 ∧H3 ∧ C5 →
�

4d

� �

k

pk B̂k ∧ F̂
a
2 −

�

k

pk B̂
�
k ∧ F̂

b
2

�
(4.2)

Defining p = gcd(pk), each of the two U(1) gauge factors is broken to a Zp gauge

symmetry. The particles that are charged under this symmetry are F1s winding around

the a and b 1-cycles, and annihilate on D2-brane instantons on the 3-cycles Π�
k × b and

Π�
k × a. The charged strings are D4-branes on the 3-cycles ∆ =

�
k(pk/p)Π

�
k × b and

∆�
=

�
k(p

�
k/p

�
)Π�

k × a, and annihilate on junctions from NS5-branes on the 5-cycles
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Crossing two 4d strings minimally charged under the two Zp factors produces r

F1s, with

r = ∆ ·∆�
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k · Π�
l (4.3)

The symmetry is a discrete Heisenberg group generated by elements T , T
�
and a central

element C, with relations

T
p
= T

�p�
= 1 , TT

�
= C

r
T

�
T (4.4)

In principle, the element C contains a finite order piece, since F1s carry discrete charges,

as follows from a further 4d BF coupling from the 10d Chern-Simons term
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This kind of configuration has already appeared in section 2.5, and leads to a Zq discrete
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k(pk)
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p . This suggests the relation C
q
= 1, on top of (4.4).

However, C is actually slightly more subtle and involves the continuous part of the

group. Indeed, the above group relations imply

T
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T

�
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T

�
(4.7)
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• When several kinds of fluxes are simultaneously present in a compactification, 

inconsistent configurations of Zp-valued wrapped branes may naively arise.

• Consider type IIB with NSNS and RR 3-form fluxes, and only two 3-cycles α, β.

which, if C involves just the discrete part of the symmetry, would require pr = 0 mod

q, which is not true in general. The point becomes clearer in the physical interpretation

of (4.7). Consider crossing one 4d string associated to T
�
with p 4d strings associated

to T , leading to the creation of pr F1s. Since the set of p T -strings is trivial, we

would expect the set of pr F1s to be so. Physically, one can indeed annihilate the F1s

in sets of p, by using combinations of D2-branes on Πk (each annihilating sets of pk

strings). However, as noted in section 2.5, such D2-branes carry non-trivial monopole

charge under the unbroken U(1)’s. Hence, the central element C contains not only the

discrete gauge transformation associated to the fundamental strings, but also a (dual)

gauge transformation of the unbroken U(1)’s.

5 Combining fluxes

When several kinds of fluxes are simultaneously present in a compactification, as often

required by the equations of motion, inconsistent configurations of Zp-valued wrapped

branes may naively arise. In a consistent microscopic theory like string theory such

configurations should therefore not be possible. In this section we discuss some of these

incompatibilities arising when combining several kinds of fluxes and the mechanisms

by which string theory avoids such configurations in consistent flux compactifications.

5.1 NSNS and RR fluxes: a puzzle and its resolution

We first consider the combination of NSNS and RR fluxes. For concreteness, we focus

on type IIB compactifications with simultaneous NSNS and RR 3-form fluxes, since

this is a particularly popular setup for moduli stabilization; similar lessons apply to

other type IIA or IIB setups with NSNS and RR fluxes.

Consider the systems of section 2.7, for simplicity with only one 3-cycle α and its

dual β, and introduce NSNS and RR 3-form fluxes such that
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‣ Particle: D3 on β. ‣ Particle: D3 on α.

‣ String: D1-branes.‣ String: fundamental strings.
‣ Instanton: D5 on X6.

‣ Junction: D3 on β.‣ Junction: D3 on α.

‣ Instanton: NS5 on X6.
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Combining fluxes
• When several kinds of fluxes are simultaneously present in a compactification, 

inconsistent configurations of Zp-valued wrapped branes may naively arise.

• Consider type IIB with NSNS and RR 3-form fluxes, and only two 3-cycles α, β.
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Combining fluxes
• When several kinds of fluxes are simultaneously present in a compactification, 

inconsistent configurations of Zp-valued wrapped branes may naively arise.

• Consider type IIB with NSNS and RR 3-form fluxes, and only two 3-cycles α, β.

• In this configuration there is a tadpole of D3-brane charge given by
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The above discussion does not imply that type IIB vacua with NSNS and RR

fluxes are inconsistent, but rather that string theory must include extra ingredients to

circumvent these problems. Indeed, it is familiar that the combination of NSNS and

RR fluxes contributes to the RR tadpoles cancellation conditions. In the above type

IIB case there is a tadpole of D3-brane charge given by the suggestive amount

Nflux =

�

X6

F 3 ∧H3 = pp
� (5.5)

It turns out that the extra ingredients required to cancel the tadpole precisely solve

the above inconsistencies. We consider here three possibilities:

- Orientifold planes. The above tadpole can be cancelled by introducing O3-

planes, as often done in the context of moduli stabilization. Their effect on the fields

relevant to the discrete symmetries is drastic, since they are all projected out and no

remnant discrete symmetry is left. The above problems are solved by removing degrees

of freedom and rendering the structures trivial.

- Anti-branes. A second possibility is to introduce D3- (or D3-)branes. They

modify the above discussion because their overall worldvolume U(1) couples to the

relevant 2-forms through the D3-brane CS couplings. Denoting respectively by f2 and

f
�
2 the field-strength of the overall U(1) and its 4d dual on a stack of pp� branes, we

have the coupling

−
�

4d

pp
� (C2 ∧ f2 + B2 ∧ f

�
2 ) (5.6)

The appearance of new degrees of freedom solves the problems, and leads to non-trivial

discrete gauge symmetries as follows. Let us denote by Q[β] and Q[α] the electric and

magnetic generators that correspond to F̂2 and F̂
�
2 in eq. (5.2), respectively; and QU(1)e

and QU(1)m the electric and magnetic generators of the D3-brane U(1), corresponding

to the field-strengths f
�
2 and f2 in eq. (5.6). An NS5-brane instanton violates these

U(1) charges by ∆Q[β] = p and ∆QU(1)e = −pp
�, while a D5-brane instanton gives

∆Q[α] = −p
� and ∆QU(1)m = −pp

�. Now consider the linear combinations

Q1 = pQ[β] −QU(1)e , Q2 = p
�
Q[α] +QU(1)m (5.7)

The magnetic dual of Q1 is pQ[α]−QU(1)m , which is preserved by all instantons. Hence,

the monopoles of Q1 do not decay, an can play the role of junctions for strings. These

are associated to the discrete subgroup Zp2−pp� ⊂ U(1)Q1 preserved by the NS5-brane

instantons. Similarly U(1)Q2 leads to a discrete Zp�2+pp� symmetry.
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• In the case of O3-planes, all flux-induced BF couplings are projected out, and 
therefore also strings ending on string junctions.

• However there is another set of discrete Zp-valued brane wrappings that survive 
the orientifold projection: 4d strings with domain walls attached.

• The extra ingredients needed to cancel the tadpole also solve the above 
inconsistencies. We have several possibilities: anti-branes, orientifold planes...
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Unstable domain walls

• In addition to the charged strings, we can have 4d strings with p domain walls 
attached.

• Therefore, p domain walls are unstable against nucleation of a string loop, and the 
vacua separated by them must be equivalent.

Figure 1: a) A 4d domain wall obtained by p D6-branes wrapped on a 4-cycle in a CY

compactification of massive IIA theory. It separates two regions of 4d spacetime which differ

by p units of RR F2 flux on the dual 2-cycle. b) The domain wall is unstable by nucleation of

holes bounded by strings, realized as one NS5-brane wrapped on the 4-cycle. The two vacua

with differing flux must therefore be equivalent.

From standard arguments [53], two vacua separated by a single domain wall differ

in one unit of RR flux F 2 along the 2-cycle dual to the wrapped 4-cycle. The above

instability of a set of p domain walls therefore indicates that vacua differing by p units

of F 2 flux along the 2-cycle are actually equivalent. Using the argument for different

2-cycles, this implies the quantization condition

pk ≡
�

Πk

F 2 ∈ pZ for any Πk ∈ H2(X6,Z) (6.1)

so the flux is Zp-valued, rather than Z-valued. This deviation from the cohomological

classification of RR fields should be a generalization (suitable for the presence of 0-form

flux) of the K-theory classification of RR fields [54]. It would be interesting to derive

this peculiar quantization from a holographic field theory dual in the context of the

massive IIA AdS4/CFT3 duals uncovered in [36].

Unstable domain walls typically arise in theories on which a discrete gauge sym-

metry G is spontaneously broken to a subgroup H (see e.g. [50] for a review). This

description encompasses our example by considering the group G = Z of monodromies

generated by the 4d strings, which is broken by F 0 to a subgroup H = Zp. Strings

with monodromies a ∈ G/H which lay in the broken generators of G cannot be stable

and have attached domain walls. Those are therefore classified by the cosets aH, so

that different strings can bound the same domain wall only if they belong to the same

coset. In cases where G contains several factors, these properties lead to an interesting
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• Flux quantization:
Two vacua separated by a 
domain wall wrapping a k-cycle 
differ in one unit of RR (6-k)-
form flux along the (6-k)-cycle 
dual to the wrapped k-cycle. 
Because of nucleation of holes 
bounded by strings both vacua 
must be equivalent, so the flux 
is Zp-valued.

D6-brane domain walls with F0 flux.



Figure 2: Collision of holes in unstable D2-brane domain walls in 4d compactifications with

F 4 and H3 fluxes.

on α3 leads to a 4d string with
�
α3

H3 D2-brane domain walls attached, and a similar

statement holds for a D4-brane wrapped on β3. By the HW effect, crossing these 4d

strings results in a stretched F1 with no domain wall attached, see figure 3.

Figure 3: In compactifications with H3 fluxes, crossing of 4d strings (wrapped D4-branes)

with attached domain walls (D2-branes) produces 4d strings with no domain wall (F1s).

6.3 Type IIB SL(2,Z) from unstable domain walls

Unstable domain walls are also present in type IIB compactifications with NSNS and

RR 3-form fluxes. We keep their discussion brief, since it is similar to the type IIA

case. We consider a generic type IIB compactification on a Calabi-Yau X6 with NSNS

and RR 3-form fluxes, and for simplicity, restrict to a single 3-cycle α3 and its hodge
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• Hole collisions: If a domain 
wall can decay via nucleation 
of different strings, holes can 
collide and lead to a single 
hole, crossed by a new 4d 
string.

D2-brane domain walls with F4 and H3 fluxes.
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• Hole collisions: If a domain 
wall can decay via nucleation 
of different strings, holes can 
collide and lead to a single 
hole, crossed by a new 4d 
string.

D2-brane domain walls with F4 and H3 fluxes.

• Hanany-Witten effect: 
The crossing of two strings 
with non-commuting 
monodromies associated to 
broken generators of G and 
commutator in H leads to the 
creation of a new 4d string 
with no domain wall attached.

D2-brane domain walls with H3 fluxes



Summary

• We have seen that type II flux compactifications give rise to Abelian and non-
Abelian discrete gauge symmetries.

• We have also studied the problems that may arise when several kinds of fluxes 
are simultaneously present in a compactification and how string theory avoids 
those inconsistent configurations.
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