Non-supersymmetric compactifications of string and F theory

Federico Bonetti

Max Planck Institute for Physics, Munich

July 16, 2013 StringPheno 2013, Hamburg

based on work with T. Grimm and T. Pugh

Introduction

- Aim of the talk: discuss a new class of F-theory constructions
- Compact dimensions ----> Spin(7) real 8-fold

see T. Grimm's talk

- Outline
 - Spin(7) manifold as quotient space: Calabi-Yau fourfold modded by antiholomorphic involution
 - A proposal for generalizing F-theory/M-theory duality to Spin(7)
 - Effective 3d action as truncation of Calabi-Yau effective action
 - Interplay between 4d and 3d effective action
 - Remarks on weak coupling picture in Type IIB
- Some aspects will not be covered
 - Focus mainly on moduli fields
 - Modes from singularity resolution are not discussed

F-theory on Spin(7) manifolds

- F-theory framework: rich class of 4d vacua

- From 12d perspective Calabi-Yau is not the minimal case
- Spin(7) is the maximal special holonomy $\longrightarrow X_8$ Spin(7) manifold?

[Vafa 96]

3d
$$\mathcal{N} = 1$$
 ? 4d $\mathcal{N} = 0$

Spin(7) manifolds from Calabi-Yau fourfolds

quick	Spin(7) manifold X_8	Calabi-Yau fourfold Y_4
reminder	$ abla \eta = 0$	$\nabla \eta_1 = \nabla \eta_2 = 0$
	$\Phi \in H^4_S(X_8)$	J,Ω

- Special class of Spin(7) manifolds
- Antiholomorphic involution $\,\sigma:Y_4 o Y_4$

$$\sigma^2 = \mathrm{id}$$
 $\sigma^* J = -J$ $\sigma^* \Omega = e^{2i\theta} \overline{\Omega}$

- Natural calibration on the quotient space $X_8 = Y_4/\sigma$

$$\Phi = \frac{1}{\mathcal{V}^2} \left\{ \frac{1}{\|\Omega\|} \operatorname{Re} \left(e^{-i\theta} \, \Omega \right) + \frac{1}{8} \, J \wedge J \right\}$$

- Singularities have to be resolved in a Spin(7) compatible way
 - beyond present discussion

[Joyce 99]

Elliptically fibered fourfolds and σ

- Elliptically fibered Calabi-Yau fourfold $\pi: Y_4 \rightarrow B_3$
- Compatibility between σ and the fibration structure
- Antiholomorphic involution on the base
- Heuristic picture of the action on the torus

Reminder: some basic facts about M-theory on Y_4

3d
$$\mathcal{N} = 2$$
 effective action
for simplicity: $b^{3}(Y_{4}) = 0$
 $S_{\mathcal{N}=2}^{3d} = \int \frac{1}{2}R * 1 - g_{\mathcal{A}\overline{\mathcal{B}}} \mathcal{D}M^{\mathcal{A}} \wedge * \mathcal{D}\overline{M}^{\overline{\mathcal{B}}} - \frac{1}{4}\Theta_{IJ}A^{I} \wedge F^{J} - V * 1$
[Haack, Louis 99,01]
 $K = -3\log \mathcal{V} - \log \int_{Y_{4}} \Omega \wedge \overline{\Omega}$ $W = \int_{Y_{4}} G_{4} \wedge \Omega$ $\mathcal{T} = \frac{1}{4\mathcal{V}^{2}} \int_{Y_{4}} G_{4} \wedge J^{2}$

Complex scalars: $M^{\mathcal{A}} = (T_I, z^{\mathcal{K}})$

Kähler moduli	Complex structure moduli
$J = v^{I} \omega_{I} \xrightarrow{(1)} \operatorname{Re} T_{I}$ $C_{3} = A^{I} \wedge \omega_{I} \xrightarrow{(2)} \operatorname{Im} T_{I}$	$\frac{\partial\Omega}{\partial z^{\mathcal{K}}} = \chi_{\mathcal{K}} - K_{\mathcal{K}}\Omega$
$I=1,\ldots,h^{1,1}(Y_4)$	$\mathcal{K} = 1, \dots, h^{3,1}(Y_4)$

(1) Legendre transform $\operatorname{Re} T_I \sim \partial \mathcal{V} / \partial v^I$ (2) 3d duality between vectors and scalars

M-theory on $X_8 = Y_4/\sigma$: truncation

- Low energy dynamics on $X_8 = Y_4/\sigma$: same couplings up to truncation of σ -odd fields •
- Cohomologies are split into positive and negative forms. E.g. •

$$H^{2}(Y_{4}) = H^{2}_{+}(Y_{4}) \oplus H^{2}_{-}(Y_{4})$$
$$\omega_{I} \longrightarrow \{ \omega_{I_{+}}, \omega_{I_{+}} \}$$

Only a subset of Kähler degrees of freedom is allowed by σ -parity •

$$\sigma^* J = -J$$

$$C_3 \text{ is } \sigma\text{-even}$$

$$J = v^{I_-} \omega_{I_-}$$

$$C_3 = A^{I_+} \wedge \omega_{I_+}$$

- We cannot combine $\operatorname{Re} T_{I_{-}}$ and $\operatorname{Im} T_{I_{+}}$ into complex scalars •
- Real slice of complex structure moduli space •

deformations must preserve $\sigma^* \Omega = e^{2i\theta} \overline{\Omega}$ \longrightarrow Im $z^{\mathcal{K}} = 0$

 $\mathcal{N}=2$ is truncated to $\mathcal{N}=1$: consistent with real moduli space of Spin(7) manifolds •

The case of an elliptic fibration

• Calabi-Yau condition for the fibration $\pi: Y_4 \rightarrow B_3$

 $c_1(B_3) = 12[\Delta]_{B_3}$ ($\Delta \equiv$ 7-brane locus on B_3)

both sides are negative under σ

• Refined structure in $H^2(Y_4)$

e.g. $\mathcal{K}_{0\alpha_{-}\beta_{-}\gamma_{+}}=0$, $\mathcal{K}_{0\alpha_{-}\beta_{-}\gamma_{-}}=\kappa_{\alpha_{-}\beta_{-}\gamma_{-}}$

Truncation in four dimensions

Uplift of 4d fields in the usual Calabi-Yau case

4d	$g_{\mu u}$			$\operatorname{Re} T_{\alpha}$	$\operatorname{Im} T_{\alpha}$	$\operatorname{Re} z^{\mathcal{K}} \operatorname{Im} z^{\mathcal{K}}$		A^i	
3d	$g_{\mu u}$	v^0	A^0	v^{lpha}	A^{lpha}	$\operatorname{Re} z^{\mathcal{K}}$	$\operatorname{Im} z^{\mathcal{K}}$	v^i	A^i

- $v^0 \sim {
 m radius}$ of the circle
- $A^0 \sim$ Kaluza-Klein vector
- $A^i \sim ext{ vectors in the Cartan of the non-Abelian gauge group}$

Truncation in four dimensions

The 3d truncation induces a 4d truncation

4d	$g_{\mu u}$		Beta	In Ta	$\operatorname{Re} z^{\mathcal{K}}$	Insk	A^i		
3d	$g_{\mu u}$	v^0	X	>~	X	$\operatorname{Re} z^{\mathcal{K}}$	In the	v^i	X

The 4d moduli sector is non-supersymmetric

۲

• In 3d A^0 and A^i are truncated but the 4d metric and vectors are kept

4d $\mathcal{N}=0$ can yield 3d $\mathcal{N}=1$

Weak coupling picture in Type IIB string theory

Weak coupling limit in F-theory: Calabi-Yau orientifold [Sen 97] •

$$B_3 = rac{Y_3}{\sigma_{
m hol}} \hspace{1cm} {
m holomorphic involution} \ \sigma_{
m hol}: Y_3 o Y_3$$

- When the antiholomorphic involution σ is included we get an additional quotient ۰
- **Proposal:** Type IIB on Y_3 modded out by •

$$\mathcal{O}_1 = (-)^{F_L} \Omega \,\sigma_{\text{hol}} \qquad \mathcal{O}_2 = (-)^{F_L} P_3 \,\sigma$$

 σ induces a Pin-odd transformations on spinors on Y_3 •

not a symmetry of Type IIB!

- Compensating Pin-odd transformation •
 - reflection in 4d spacetime

$$P_3: (x^0, x^1, x^2, x^3) \mapsto (x^0, x^1, x^2, -x^3)$$

 x^3 parameterizes the interval that decompactifies in the F-theory limit

 Y_3

Weak coupling picture in Type IIB string theory

• Weak coupling limit in F-theory: Calabi-Yau orientifold [Sen 97]

$$B_3 = rac{Y_3}{\sigma_{
m hol}} \hspace{1cm} {
m holomorphic involution} \ \sigma_{
m hol}: Y_3 o Y_3$$

- When the antiholomorphic involution σ is included we get an additional quotient
- **Proposal**: Type IIB on Y_3 modded out by

$$\mathcal{O}_1 = (-)^{F_L} \Omega \sigma_{\text{hol}} \qquad \mathcal{O}_2 = (-)^{F_L} P_3 \sigma$$

• 10d fields in Type IIB have intrinsic parities under σ

$$x \to x \quad y \to -y$$

IIB	ϕ	$g_{\mu u}$	$g_{\mu oldsymbol{y}}$	$g_{{m y}{m y}}$	$B_{\mu u}$	$B_{\mu y}$	C_0	$C_{\mu u}$	$C_{\mu y}$	$C_{\mu\nu\rho y}$
IIA	ϕ	$g_{\mu u}$	$B_{\mu y}$	$g_{{m y}{m y}}$	$B_{\mu u}$	$g_{\mu oldsymbol{y}}$	$C_{\boldsymbol{y}}$	$C_{\mu\nu y}$	C_{μ}	$C_{\mu u ho}$
Μ	g_{xx}	$g_{\mu u}$	$C_{\mu yx}$	g_{yy}	$C_{\mu u x}$	$g_{\mu oldsymbol{y}}$	g_{xy}	$C_{\mu\nu y}$	$g_{\mu x}$	$C_{\mu\nu\rho}$

Conclusions

- Proposed generalization of F-theory/M-theory duality
 - Spin(7) internal space
 - Uplift from 3d to 4d on an interval
- More tractable case: Spin(7) manifold as quotient of Calabi-Yau fourfold
- 3d truncation from $\mathcal{N}=2$ to $\mathcal{N}=1$
- 4d uplift to non-supersymmetric theory
- Many interesting problems
 - charged matter
 - Spin(7) resolution modes
 - > phenomenological features
 - characterization of Spin(7) manifolds suitable for F-theory

Conclusions

- Proposed generalization of F-theory/M-theory duality
 - Spin(7) internal space
 - Uplift from 3d to 4d on an interval
- More tractable case: Spin(7) manifold as quotient of Calabi-Yau fourfold
- 3d truncation from $\mathcal{N}=2$ to $\mathcal{N}=1$
- 4d uplift to non-supersymmetric theory
- Many interesting problems
 - charged matter
 - Spin(7) resolution modes
 - phenomenological features
 - characterization of Spin(7) manifolds suitable for F-theory

Thank you for your attention!

Some remarks on charged matter

- 4d charged chiral matter is not accessible directly in the M-/F-theory duality
- Hard to proceed with the previous methods
- Type IIB picture at weak coupling: open strings stretching between intersecting magnetized D7-branes

4d $\mathcal{N} = 1$ chiral matter

holomorphic embedding & (1,1) worldvolume flux

- Possible strategy: consider weak coupling at toroidal orbifold point for Y₃
 - explicit worldsheet description available
 - projection onto invariant states under \mathcal{O}_1 and \mathcal{O}_2
- Any image brane under σ has still holomorphic embedding and (1,1) flux
- All intersections yield at least one massless complex scalar together with a chiral fermion before the projection is performed
- Some examples: the projection is democratic in bosons and fermions
- Further analysis needed to clarify charged matter spectrum