Non-supersymmetric compactifications of string and F theory

Federico Bonetti
Max Planck Institute for Physics, Munich

July 16, 2013
StringPheno 2013, Hamburg

Introduction

- Aim of the talk: discuss a new class of F-theory constructions
- Compact dimensions \longrightarrow Spin(7) real 8-fold
- Outline
$>$ Spin(7) manifold as quotient space: Calabi-Yau fourfold modded by antiholomorphic involution
$>$ A proposal for generalizing F-theory/M-theory duality to Spin(7)
> Effective 3d action as truncation of Calabi-Yau effective action
> Interplay between 4d and 3d effective action
> Remarks on weak coupling picture in Type IIB
- Some aspects will not be covered
$>$ Focus mainly on moduli fields
> Modes from singularity resolution are not discussed

F-theory on Spin(7) manifolds

- F-theory framework: rich class of 4 d vacua
- No 12d effective action \longrightarrow F-theory/M-theory duality

- X_{8} Calabi-Yau fourfold

$$
3 \mathrm{~d} \mathcal{N}=2 \leftarrow{ }^{S^{1}} 4 \mathrm{~d} \mathcal{N}=1
$$

- From 12d perspective Calabi-Yau is not the minimal case
- Spin(7) is the maximal special holonomy $\longrightarrow X_{8}$ Spin(7) manifold?

$$
3 \mathrm{~d} \mathcal{N}=1 \quad ? \quad 4 \mathrm{~d} \mathcal{N}=0
$$

Spin(7) manifolds from Calabi-Yau fourfolds

	quick	$\operatorname{Spin}(7)$ manifold X_{8}
reminder	$\nabla \eta=0$	Calabi-Yau fourfold Y_{4}
\lfloor	$\Phi \in H_{S}^{4}\left(X_{8}\right)$	$\nabla \eta_{1}=\nabla \eta_{2}=0$
		J, Ω

- Special class of Spin(7) manifolds
[Joyce 99]
- Antiholomorphic involution $\sigma: Y_{4} \rightarrow Y_{4}$

$$
\sigma^{2}=\mathrm{id} \quad \sigma^{*} J=-J \quad \sigma^{*} \Omega=e^{2 i \theta} \bar{\Omega}
$$

- Natural calibration on the quotient space $X_{8}=Y_{4} / \sigma$

$$
\Phi=\frac{1}{\mathcal{V}^{2}}\left\{\frac{1}{\|\Omega\|} \operatorname{Re}\left(e^{-i \theta} \Omega\right)+\frac{1}{8} J \wedge J\right\}
$$

- Singularities have to be resolved in a Spin(7) compatible way
> beyond present discussion

Elliptically fibered fourfolds and σ

- Elliptically fibered Calabi-Yau fourfold $\pi: Y_{4} \rightarrow B_{3}$
- Compatibility between σ and the fibration structure
- Antiholomorphic involution on the base

- Heuristic picture of the action on the torus

$$
d s^{2}=\frac{v}{\tau_{2}}\left[\left(d x+\tau_{1} d y\right)^{2}+\tau_{2}^{2} d y^{2}\right]
$$

$$
\tau=\tau_{1}+i \tau_{2}
$$

$$
\tau \rightarrow-\bar{\tau} \quad \square \quad \begin{aligned}
& x \rightarrow x \\
& y \rightarrow-y
\end{aligned}
$$

the B-cycle is turned into an interval S^{1} / \mathbb{Z}_{2}

- Proposal:

$$
3 \mathrm{~d} \mathcal{N}=1 \stackrel{S^{1} / \mathbb{Z}_{2}}{\leftarrow} 4 \mathrm{~d} \mathcal{N}=0
$$

Reminder: some basic facts about M-theory on Y_{4}

3d $\mathcal{N}=2$ effective action for simplicity: $b^{3}\left(Y_{4}\right)=0$
$\longrightarrow \Theta_{I J}=\int_{Y_{4}} G_{4} \wedge \omega_{I} \wedge \omega_{J}$

$$
S_{\mathcal{N}=2}^{3 \mathrm{~d}}=\int \frac{1}{2} R * 1-g_{\mathcal{A} \overline{\mathcal{B}}} \mathcal{D} M^{\mathcal{A}} \wedge * \mathcal{D} \bar{M}^{\overline{\mathcal{B}}}-\frac{1}{4} \Theta_{I J} A^{I} \wedge F^{J}-V * 1 \quad \text { [Haack, Louis 99,01] }
$$

$$
K=-3 \log \mathcal{V}-\log \int_{Y_{4}} \Omega \wedge \bar{\Omega} \quad W=\int_{Y_{4}} G_{4} \wedge \Omega \quad \mathcal{T}=\frac{1}{4 \mathcal{V}^{2}} \int_{Y_{4}} G_{4} \wedge J^{2}
$$

Complex scalars: $M^{\mathcal{A}}=\left(T_{I}, z^{\mathcal{K}}\right)$

Kähler moduli	Complex structure moduli
$J=v^{I} \omega_{I} \quad$(1) $C_{3}=A^{I} \wedge \omega_{I}$ $I=1, \ldots, h_{I}^{1,1}\left(Y_{4}\right)$ $\operatorname{Im} T_{I}$	$\frac{\partial \Omega}{\partial z^{\mathcal{K}}}=\chi_{\mathcal{K}}-K_{\mathcal{K}} \Omega$

[^0]
M-theory on $X_{8}=Y_{4} / \sigma$: truncation

- Low energy dynamics on $X_{8}=Y_{4} / \sigma$: same couplings up to truncation of σ-odd fields
- Cohomologies are split into positive and negative forms. E.g.

$$
\begin{aligned}
H^{2}\left(Y_{4}\right) & =H_{+}^{2}\left(Y_{4}\right) \oplus H_{-}^{2}\left(Y_{4}\right) \\
\omega_{I} & \longrightarrow\left\{\omega_{I_{+}}, \omega_{I_{+}}\right\}
\end{aligned}
$$

- Only a subset of Kähler degrees of freedom is allowed by σ-parity

$$
\begin{aligned}
\sigma^{*} J=-J \\
C_{3} \text { is } \sigma \text {-even }
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
J & =v^{I_{-}} \omega_{I_{-}} \\
C_{3} & =A^{I_{+}} \wedge \omega_{I_{+}}
\end{aligned}
$$

- We cannot combine $\operatorname{Re} T_{I_{-}}$and $\operatorname{Im} T_{I_{+}}$into complex scalars
- Real slice of complex structure moduli space

$$
\text { deformations must preserve } \sigma^{*} \Omega=e^{2 i \theta} \bar{\Omega} \Longrightarrow \operatorname{Im} z^{\mathcal{K}}=0
$$

- $\mathcal{N}=2$ is truncated to $\mathcal{N}=1$: consistent with real moduli space of Spin(7) manifolds

The case of an elliptic fibration

- Calabi-Yau condition for the fibration $\pi: Y_{4} \rightarrow B_{3}$

$$
c_{1}\left(B_{3}\right)=12[\Delta]_{B_{3}} \quad\left(\Delta \equiv 7 \text {-brane locus on } B_{3}\right)
$$

both sides are negative under σ

- Refined structure in $H^{2}\left(Y_{4}\right)$

Poincaré dual to B_{3} negative under σ
(the orientation of the torus fiber is reversed)

pull-back from $H^{2}\left(B_{3}\right)$
split $\omega_{\alpha} \rightarrow\left\{\omega_{\alpha_{+}}, \omega_{\alpha_{-}}\right\}$
according to $\sigma: B_{3} \rightarrow B_{3}$

Poincaré dual to exceptional divisors negative under σ (σ reverses the \mathbb{P}^{1}-fiber of the exceptional divisors)

- Simultaneous fibration and σ constraints on the intersection numbers
e.g. $\mathcal{K}_{0 \alpha_{-} \beta_{-} \gamma_{+}}=0, \mathcal{K}_{0 \alpha_{-} \beta_{-} \gamma_{-}}=\kappa_{\alpha_{-} \beta_{-} \gamma_{-}}$

Truncation in four dimensions

- Uplift of 4d fields in the usual Calabi-Yau case

4d		$g_{\mu \nu}$		$\operatorname{Re} T_{\alpha}$	$\operatorname{Im} T_{\alpha}$	$\operatorname{Re} z^{\mathcal{K}}$	$\operatorname{Im} z^{\mathcal{K}}$	A^{i}	
3d	$g_{\mu \nu}$	v^{0}	A^{0}	v^{α}	A^{α}	$\operatorname{Re} z^{\mathcal{K}}$	$\operatorname{Im} z^{\mathcal{K}}$	v^{i}	A^{i}

- $v^{0} \sim$ radius of the circle
- $A^{0} \sim$ Kaluza-Klein vector
- $A^{i} \sim$ vectors in the Cartan of the non-Abelian gauge group

Truncation in four dimensions

- The 3d truncation induces a 4d truncation

- The 4 d moduli sector is non-supersymmetric
- In 3d A^{0} and A^{i} are truncated but the 4 d metric and vectors are kept

4d to 3d reduction on an interval
\qquad boundary conditions at the endpoints
some KK zero-modes are removed from the 3d theory

- The interval halves the components of 4 d massless fermions

$$
4 \mathrm{~d} \mathcal{N}=0 \text { can yield } 3 \mathrm{~d} \mathcal{N}=1
$$

Weak coupling picture in Type IIB string theory

- Weak coupling limit in F-theory: Calabi-Yau orientifold [Sen 97]

$$
B_{3}=\frac{Y_{3}}{\sigma_{\mathrm{hol}}} \quad \begin{aligned}
& \text { holomorphic involution } \\
& \sigma_{\mathrm{hol}}: Y_{3} \rightarrow Y_{3}
\end{aligned}
$$

- When the antiholomorphic involution σ is included we get an additional quotient
- Proposal: Type IIB on Y_{3} modded out by

$$
\mathcal{O}_{1}=(-)^{F_{L}} \Omega \sigma_{\mathrm{hol}} \quad \mathcal{O}_{2}=(-)^{F_{L}} P_{3} \sigma
$$

- σ induces a Pin-odd transformations on spinors on Y_{3}
\longrightarrow not a symmetry of Type IIB!
- Compensating Pin-odd transformation
\longrightarrow reflection in $4 d$ spacetime

$$
P_{3}:\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \mapsto\left(x^{0}, x^{1}, x^{2},-x^{3}\right)
$$

Weak coupling picture in Type IIB string theory

- Weak coupling limit in F-theory: Calabi-Yau orientifold [Sen 97]

$$
B_{3}=\frac{Y_{3}}{\sigma_{\mathrm{hol}}} \quad \begin{aligned}
& \text { holomorphic involution } \\
& \sigma_{\mathrm{hol}}: Y_{3} \rightarrow Y_{3}
\end{aligned}
$$

- When the antiholomorphic involution σ is included we get an additional quotient
- Proposal: Type IIB on Y_{3} modded out by

$$
\mathcal{O}_{1}=(-)^{F_{L}} \Omega \sigma_{\mathrm{hol}} \quad \mathcal{O}_{2}=(-)^{F_{L}} P_{3} \sigma
$$

- 10d fields in Type IIB have intrinsic parities under σ

IIB	ϕ	$g_{\mu \nu}$	$g_{\mu y}$	$g_{y y}$	$B_{\mu \nu}$	$B_{\mu y}$	C_{0}	$C_{\mu \nu}$	$C_{\mu y}$	$C_{\mu \nu \rho y}$
IIA	ϕ	$g_{\mu \nu}$	$B_{\mu y}$	$g_{y y}$	$B_{\mu \nu}$	$g_{\mu y}$	C_{y}	$C_{\mu \nu y}$	C_{μ}	$C_{\mu \nu \rho}$
M	$g_{x x}$	$g_{\mu \nu}$	$C_{\mu y x}$	$g_{y y}$	$C_{\mu \nu x}$	$g_{\mu y}$	$\underbrace{g_{x y}}_{\sigma \text {-even }}$	$C_{\mu \nu y}$	$g_{\mu x}$	$C_{\mu \nu \rho}$

Conclusions

- Proposed generalization of F-theory/M-theory duality
> Spin(7) internal space
> Uplift from 3d to 4d on an interval
- More tractable case: Spin(7) manifold as quotient of Calabi-Yau fourfold
- 3d truncation from $\mathcal{N}=2$ to $\mathcal{N}=1$
- 4d uplift to non-supersymmetric theory
- Many interesting problems
$>$ charged matter
$>\operatorname{Spin}(7)$ resolution modes
> phenomenological features
$>$ characterization of Spin(7) manifolds suitable for F-theory

Conclusions

- Proposed generalization of F-theory/M-theory duality
> Spin(7) internal space
> Uplift from 3d to 4d on an interval
- More tractable case: $\operatorname{Spin}(7)$ manifold as quotient of Calabi-Yau fourfold
- 3d truncation from $\mathcal{N}=2$ to $\mathcal{N}=1$
- 4d uplift to non-supersymmetric theory
- Many interesting problems
$>$ charged matter
> Spin(7) resolution modes
> phenomenological features
$>$ characterization of Spin(7) manifolds suitable for F-theory

Thank you for your attention!

Some remarks on charged matter

- 4 d charged chiral matter is not accessible directly in the M-/F-theory duality
- Hard to proceed with the previous methods
- Type IIB picture at weak coupling: open strings stretching between intersecting magnetized D7-branes

$$
4 \mathrm{~d} \mathcal{N}=1 \text { chiral matter }
$$

holomorphic embedding
$\&$
$(1,1)$ worldvolume flux

- Possible strategy: consider weak coupling at toroidal orbifold point for Y_{3}
- explicit worldsheet description available
- projection onto invariant states under \mathcal{O}_{1} and \mathcal{O}_{2}
- Any image brane under σ has still holomorphic embedding and $(1,1)$ flux
- All intersections yield at least one massless complex scalar together with a chiral fermion before the projection is performed
- Some examples: the projection is democratic in bosons and fermions
- Further analysis needed to clarify charged matter spectrum

[^0]: (1) Legendre transform $\operatorname{Re} T_{I} \sim \partial \mathcal{V} / \partial v^{I}$
 (2) 3d duality between vectors and scalars

