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String Phenomenology

2012: a diverse subject covering many directions.

Many ways to engineer Standard Model-like theories in string theory

SU(3)e x SU(2) x U(1)y with 3 families can be obtained in brane in-

tersections
What about going to higher GUT energies (1010 GeV)?

Impose the condition of Built-in GUT Unification: we can get one of the

rank 4,5 or 6 groups: SU(5), SO(10), E;

Question: SU(5), SO(10), Eg perturbative Open Strings (D-branes)?

Answer is NO, for various reasons in the case of each group:

1) Eg (or any other exceptional group) cannot be obtained with D-brane

configurations.



2) SO(10): quarks and leptons sit in 16 which is a spinor representation
3) SU(5) in D-brane pictures, it has two big problems:

(a) Does not exclude the Proton Decay which is is in disagreement with

the life expentancy for the proton
(b) D-branes can't describe the up-type quarks Yukawa couplings

Solution: embed them into at least £~ group appearing naturally in Het-

erotic, Fheory, M-theory
We need to describe the breaking of Eg to SU(5)qr or SO(10)ayT.

Focus on SO(10) GUT group (SU(5), Fg in Sakura talk)

e One advantage: The matter representations can enter a single repre-
sentations of some larger group of symmetries, containing SU(5) as a

subgroup.

Minimal Requirements



e SO(10) GUT group is a SUSY extension of the Standard Model of
Particle Physics

e Unify SU(3) x SU(2) x U(1) into SO(10)

e we have 3 generations of

1637 = (q,uc, e d% [, vp)

e contains the Right handed neutrino v useful for Seesaw mechanism

This is an improvement as compared to SU(5) where the right handed

neutrino were introduced as complex structure moduli.

Question: How can one see the splitting of moduli when going from
SO(10) to SU(5)?

e When answering this question one can also address :

The breaking pattern SO(10) — SU(5) x U(1) allows for an additional
neutral gauge boson Z , which could be almost as light as the SM gauge

bosons, e.g., at the TeV scale



e One needs Higgs particles for particle masses. What representations for
the Higgs field?

16 x 16 = 10 + 120 + 126 so Higgs can be in 10, 120, 126

e The simplest choice is when Higgses H are in 10 representation.

- Yukawa couplings are f;;16;16,10.

- This leads to similar equalities as in SU(5) case between the masses of
down quarks and charged leptons which:

my = my but fails for the first 2 families ms = m,,, my = Mme.

- One way to solve this paradox is to consider the 126 Higgs field: 16161267
which would introduce a see-saw mass for the RH neutrinos

- Problem in String Theory: how to include the 126 Higgs?
e hep-th/9604112 (March-Russell and Dienes) : free-field heterotic string

models can't give a massless 126 representation of SO(10) for level 1.

One needs to go to higher levels to get an aswer in Heterotic strings.



e What about 126 in F-theory?

One can have:

e F-theory models dual to Heterotic String

e F-theory which are not dual to Heterotic string

For the first type, we use the Heterotic/F-theory duality to map vector

bundles from heterotic strings into F-theory

In Heterotic string, the representations of SU(5) are obtained from the

representation of the vector bundle which breaks Eg to the GUT group.
For SU(5) GUT group, we need an SU(5) bundle and the correspon-

dence between the representations p(V') and and those of the unbroken

SU(5>GUT IS:

V 10 (V is the 5 of vector bundle SU(5))

A2V* 5 (A?V is the 10 of vector bundle SU(5))



For SO(10), we need an SU(4) bundle and the correspondence between
the representations p(V') and and those of the unbroken SO(10)cyrT is:

V < 16
A2V* < 10

There is no correspondent for 126 so it is not clear what 126 would be

in the heterotic or F-theory picture for these models.

Concentrate on the minimal SO(10) model with only the f;;16;16;10y
coupling.
F-theory Picture
Compactify F-theory on an elliptic fibered Calabi-Yau 4-fold
m:. X — B3.
We assume that X is given by Weierstrass equation:

=23+ xf+ g



The gauge groups obtained on branes are A,,, D,,, E;, groups.

Ay, groups are obtained with stacks of multiple D7 branes of the same
(p.q) type.
D, groups are obtained with stacks of D7 branes and lifts of O7 planes.

Ey, groups can only be obtained by overlaps of different (p,q) 7-branes.

Local F-theory phenomenology approach (Beasley, Heckmann, Vafa;Donagi-
Weijnholt

Focus on effective 4D N = 1 Super-Yang-Mills theory on divisor S

Many aspects of gauge theory associated with the discriminant locus .5,

only on the geometry of X around S.

The matter multiplets only sees the geometry along the codimension-2

loci of B3

The Yukawa couplings are obtained from codimension-3 loci of Bj3.



Let us considered the SU(5) model (A4 singularity) and go to the codi-

mension 3 singularities.
This is supposed to be related to an “FEj singularity” (at local level)
Unbroken SU(5) gauge symmetry - elliptic fibered manifold

y2 — 23 4 asyx + a4z:1:2 + a322y + (a2z3 + f024)x + (a0z5 + 9026), ,

where (z,y) are coordinates for the elliptic fiber of the elliptic fibration
2 is the coordinate normal to the discriminant locus .S of the GUT gauge
group.

02,345 are functions of local coordinates of 5.

For SU(5) GUT models - The discriminant of this elliptic fibration is given



1
Ao 2 (16 1P0) 4 22 (120,P0) — a2R0)
27 4

+2° (a%ai +- O(a5)) + 2 (16 as + @(%)) + O(Z4>bl>

z =0 is the locus of SU(5) GUT gauge fields (codimension-1 singularity
in a base 3-fold)

Two matter curves (codimension-2 singularities):

a5 = 0: SU(5)-10 + 10 representations are localized

PO = aoa% — aoasas + a4a§ — 0: 5+ 5 representations are localized.
as = 0: singularity in (z,y, z)-surface is “enhanced” from A4 to “D5"
“"Ds" means that it could be the genuine D5 or something else

P®) = 0 :singularity in (x,y, z)-surface is “enhanced” from A, to “As"

“Ar" means that it could be the genuine Ax or something else



A o z" when a5 = 0 (as in D5 singularity)
A x 29 for PP) = 0 (as in A5 singularity).
There are isolated codimension-3 singularities along the matter curves.

On a5 curve:

— type (a): common zero of a5 and ay,

— type (d): common zero of a5 and as.
On the P®) =0 curve they are at:

—type (c1): common zero of P1®) and R®) but a5 £ 0 , with

2 3
RO = (a2 — Q%CML) — CL% ((%> + fo <@> — go) (2)
as as ar

In the local picture, when zooming towards the gauge divisors, the de-
formations of genuine Ejg, Dg and Ag singularity, respectively, to Ay
are good approximation of local geometry of each of the three types of

codimension-3 singularities above.



In this limit, field theory local model with Eg, SO(12) and SU(7) gauge
groups can be used to analyze physics localized at these types of codim.-3

singularities.
Type (a) Singularity: "Eg" — Ay
The type (a) codimension-3 singularity is generated the Yukawa couplings

of the form
AW = 10%10°5% ... (3)

The most generic deformation of Ej singularity
Z4
Y2 = X9+ X(e9Z% 4+ €57 + €3) + (Z +egZ° + eqZ + 612> . (4)

When €9 55 and €6 9 19 are zero - Eg singularity.
€2,5.8 and €g 9 19 are functions of local coord. uy, (m =1,2) on S.

To preserve SU(5) unbroken symmetry, the deformation is parametrized

by two complex numbers for a given point on S, a4 and as.



By zooming and rescaling, we could see that the deformed Ef geometry

maps into the A, singular geometry.

We can choose Ejg as the gauge group of field theory local model for the

geometry around the type (a) codimension-3 singularity,

The deformation can be seen by studying the vev of the Higgs field in the

directions orthogonal to the D7 branes.

This works for diagonal Higgs field. Other consideration: non-diagonal

Higgs field which leads to T-branes.

Consider now going beyond the local version of the geometries. The
question would be is if we get from one type of Kodaira fibre to another

one if we go in higher codimension.

There are several way to do this:

a) using only blow-ups like in Sven Krause, Christoph Mayrhofer, Timo
Weigand (1109.3454) based on Grimm-Weigand 1006.0226



b) using blow-ups plus small resolutiong with consideration of several
patches Esole-Yau 1107.0733

c) using blow-ups and small resolutions with single patch Marsano and
Schafer-Nameki 1108.1794

In this talk: b) + c)
Question: does the field theory enhancing of singularity survive in the
global model?

Instead of working with a singular CY 4-fold, they resolved the singularities
along the gauge divisors and then took to 0 various parameters appearing

in the geometry.

To resolve the singularities they used two P? blow-ups and 2 small reso-

lutions.

The first two P2 blow-ups give rise to a smooth geometry in case as, a., as,

are all different from zero



In the case some of the a; coefficents or the corresponding combinations

are 0 (as before), the geometry becomes an affine binomial variety
TY=uvt

where y and ¢ depend on the coefficients a;.

This is similar to the well-known conifold singularity xy = wv which is

resolved with one P! cycle.

In the case of the binomial variety, one needs two P cycles.

The conclusion of 1107.0733: E Kodaira fiber is not recovered.
Nevertheless, this is not unexpected as it was not neccesary to get F;
Actually there are two ways of making the blow-ups:

1) blow up 4 times (with 2 P? and small resolutions) and then take the
limits when some of the a; coefficents or the corresponding combinations

are 0.



2) blow up the two P? cycles, then take the limits when some of the a;
coefficients or the corresponding combinations are 0 and then perform the

small resolutions

For A4 singularity, going the route 1) or 2) reaches the same result.

Going the route 1), one starts with four 2-cycles: C4, Co4 when as, ay, a5

are all different from zero and obtain C34, C4+ when some a; are zero.

The relation between C4, Co+ and C'34, Cy4 show us how the cycles

are redistributed.

Going the route 2), one needs to keep trak of cycles who shrink and then
perform new resolutions and study the intersections between the old and

new cycles.

For D5, going the route 1) is clear, going the route 2) is less clear. For

higher groups, going the route 2) becomes harder.

The problem: higher Dynkin diagrams?



Possible explanation: ag, a4, a5 are all complex deformations of the geom-
etry. Deforming singularities by taking combinations of a3, a4, a5 to zero

and then resolving might not be the same as doing the other way around.

Similar situation in the resolutions of N = 2 singularities and then N =

2 — N =1 by a superpotential for the adjoint fields.
&
W = a;;®;
Even when considering the case 1) for the blow-up, the disadvantage of

Esole-Yau method is that one needs to consider 3 patches at every step

of the resolution.

This can become cumbersome for higher singularities when trying to iden-

tify the recombination of cycles or their intersection (SO(10), Eg)

Marsano and Schafer-Nameki (1108.1794): consider a global picture where

one looks at a single patch for every step of the resolution.

Look at the vanishing of various section inside some CY 4-fold.



The method clearer to follow.

The success of this method consisted in showing that one does not need
to think of enhacing the singularity but one should look at the weights of

representations.

This is why one needs to use " Eg” or " E7”.

e Consider the roots of the affine A4: a;,2=1,---.5

e Codimension 2 singularity - over the 10 matter locus a5 = 0
—a — (p1p + a1 + g+ az) + (p1p — a1 — 209 — az)

—ay = (10 + 1 + ag + a3) + (u1p — @z — a3 — ay) + (—ay)

To each «; one associates a divisor DD related to vanishing of some

section in the global geometry.
Their intersection gives rise to the extended SU(5) Dynkin diagram

After the splitting, one gets representations of SU(5).



How to apply to SO(10) - D5 singularity?

We expect 16 from “Ejg" enhancement, 10 from “Dg" enhancement and

16 16 10 from “E;" enhacement (again, these are field theory indications)
We construct the resolution in the auxiliary 5-fold X - P? bundle
o is inherited from the hyperplane of the P? fiber.

The Tate form for an SO(10) singularity at z = 0 is

yrw + by zoyw + byzPyw® = x° + bozatw + byzozw® + bgzw? . (5)

The resolution of the singularity is obtain with with three blowups and

two small resolutions:

r=C0x, Y=Qy, 2=G2

where ¢ = 0 gives rise to an exceptional divisor E7.



T =00, Yr=yoo, (= Qa.
The section o = 0 gives rise to an exceptional divisor Fs.

Third blow up along 19 = (9 = a = 0, which we do by setting

Y2 = y3p, Go = (30, a=azf.

The section 5 = 0 gives rise to a new exceptional divisor Fj3.

The fourth blow up is along y3 = (3 = 0 and we do this by setting
Y3 = Y404, (3= G404

The fifth blow up is along y4 = a3 = 0 and is y4 = y505, a3 = @505
The sections 04 = 0 and 05 = 0 give rise to new divisors F; and Ef .

The section z = 0, where the Dx singularity is located, splits as

2 = 21Q4058%0405 = 0



The Cartan divisors are these six factors restricted to the resolved 4-fold

Yy, and are given by

Cartan Divisor, Component Class in Y}
D—a (21 =0)]y, S2 — I
D_qy (04 = 0)‘3/47@5&0 —F1+ By + B3+ 2E,
Dy (G4=0)ly,  E1—Ey—FE3—E)4 (6)
D—ozg (6 — O)‘Y4 g
D—oz4 (55 — O)‘Y4 Ly
D_q; (a5 =0)ly, (B> — E3 — E)

whose intersection of the Cartan divisors is exactly the Cartan matrix of

the extended SO(10).
Therefore the codimension 1 discussion involving gauge fields is correct.
Now move to matter and Yukawas couplings.

The discriminant of the SO(10) singularity has an expansion



A = —1627b302r + (—27b§ — 826363 + T2bobyb? + 4b1by
(902 + 4bobybs + 1663 (b?L — dbobg))2S + O(2Y).
In summary, we would expect the following enhancements:
”Dg: bs =0, Eg " by =0
"B M by = bs =0, D7 by = b% — 4bobg = 0
e We expect to get matter in the 16 of SO(10) along z = by = 0.

Look at one specific component of z = 0, namely 5 = 0.

B =by =0 — ys504(y505 + b3¢4) =0

so it reduces to three components

Bl - bo] = 18] - lys| + [B] - ([04] = [Ca]) + [B] - ([b2] — [ys] — [04] + [Ca])



Second component is |3]-(|04]—|(4]) since the first Cartan divisor restricted
to by gives 5 = 0.

2z = () splits into 7 components along by = 0

The splitting of the weight associated to the third root is

—as=(0,1,-2,1,1) = (=2,1,0,0,0)4(1,0,—1,1,0)+(1,0,—1,0, 1)

(1,0,-1,1,0) corresponds to — (i1 — @] — @9 — a3 — Q4 — Q)
(1,0,-1,0,1) corresponds to ji1g — a9 — 2ai3 — ay — a5,

Result: instead of having the Eg enhacement, we obtain a splitting in-

volving weights of the representation 16 for SO(10).
e Matter in the 10 representation

We expect to get matter in the 10 along z = b3 = 0.



Look at another specific component of 2z = 0, namely 05 = 0 which splits

iInto 7 components, as one would expect from a " Dg" enhancement.

The 05 = 0 root splits as

(0,0,1,—2,0) — (0,0,1,0,—2) + (0,0,0, —1,1) + (0,0,0, —1, 1)

The first component is a Cartan divisor, but the other two are both given
by p1o —a1 —ax —az —ay

Result: instead of Ejg enhacement, split involving weights of the represen-
tation 10 for SO(10).

e Yukawa Couplings

Yukawa interaction - " E7" enhancement which is given by by = b3 = 0.

This corresponds to the Yukawa coupling 16 x 16 x 10 as can be seen

from the splitting of the divisors involving both 1119 and 114



The " 7" enhancement has only 7 components instead of the expected

8, this is similar to what was shown to happen with Ejg in Esole-Yau
e D7 enhancement
We expect to get a "D7" enhancement at b3 = bz — 4bobg = 0.

One sees see that the two previously separate 10 matter curves become
one, we believe that this corresponds to a 10 x 10 X 1 coupling, we do

not see a curve for the singlet as it is not part of the GUT divisor.

Now we turn to discuss the G-flux



G-Flux

Remember: the existence of the (2,2) form G-flux is a requirement of the

heterotic - F theory duality.

Local geometries - G-flux can be constructed from Heterotic string data

in terms of spectral covers.
Global geometries -we use the approach Marsano, Schafer-Nameki et al.

The global approach was successfully applied to the case of A, singularities
We follow the same path for the SO(10) group.
Our original 4-fold Y} is given by

yzw + b1zryw + b322yw2 =27+ bgszw + b4z3:1;w2 + b6z5w3

Tate divisor: wz(beQ + by22rw + bgztw? — biry — b3zyw)
it can be rewritten in terms of the t = y/x as z(bot* + byz’t? + bgz* —



blt5 — b32t3
s = z/t and holding s fixed in the limit £ — 0, z — 0:

st” (bg + b452 + b654 — bgs)
For the resolved Calabi-Yau 574, the total transform of the Tate divisor
wy2 — 23 =01s
2 2

Q%o/éﬁ%%g (wy554 — x‘;’C4oz55) =0 (7)
wy%54 — x%@a%ﬁ = 0 is the proper transform of the Tate divisor, which
we then restrict to the resolved Y.
The proper transform of the Tate divisor is reducible, with components
given by (4 = 0, z1 = 0, and the remainder.
To see this, set (4 = 0.

We cannot have w =0, y5 = 0, a5 = 0 or 05 = 0, so we set these equal

1.



The Tate divisor equation is now 04 = 0 and the equation for the resolved

Y} also becomes &4 = 0 so Tate divisor equation is automatically satisfied.

lts intersection with the Cartan divisors takes the form:
Crate 7, Y = (0,0,0,1,0) x 4. (8)

Local limit: only 05 — 0 is allowed , giving the required spectral equation
beys + bayz — bsys + by = 0

The local limit yield the the Higgs bundle description - consistency check.
Quantisation condition :

G + %62(374) takes values in H*(Yy, Z)

The condition holds for SU(5) or Eg

Extra constraints on the base B3 are needed for the SO(10) case. Why?
This was pointed out in Kuntzler, Schafer-Nameki (1205.5688)



Conclusions

e SO(10) GUT needs more study
e Understanding better resolution the singularities for Calaby Yau 4-fold
e [ry to introduce Higgs in 126 representation

e Understand the additional contraints impose on the base B3



