
SO(10) group in F-theory Phenomenology

Radu Tatar, University of Liverpool

Bad Honnef 2 October 2012



String Phenomenology

• 2012: a diverse subject covering many directions.

•Many ways to engineer Standard Model-like theories in string theory

• SU(3)c ⇥ SU(2) ⇥ U(1)Y with 3 families can be obtained in brane in-

tersections

•What about going to higher GUT energies (1016 GeV)?

• Impose the condition of Built-in GUT Unification: we can get one of the

rank 4,5 or 6 groups: SU(5), SO(10), E6

• Question: SU(5), SO(10), E6 perturbative Open Strings (D-branes)?

Answer is NO, for various reasons in the case of each group:

• 1) E6 (or any other exceptional group) cannot be obtained with D-brane

configurations.



• 2) SO(10): quarks and leptons sit in 16 which is a spinor representation

• 3) SU(5) in D-brane pictures, it has two big problems:

• (a) Does not exclude the Proton Decay which is is in disagreement with

the life expentancy for the proton

• (b) D-branes can’t describe the up-type quarks Yukawa couplings

• Solution: embed them into at least E7 group appearing naturally in Het-

erotic, Fheory, M-theory

•We need to describe the breaking of E8 to SU(5)GUT or SO(10)GUT .

• Focus on SO(10) GUT group (SU(5), E6 in Sakura talk)

• One advantage: The matter representations can enter a single repre-

sentations of some larger group of symmetries, containing SU(5) as a

subgroup.

•Minimal Requirements



• SO(10) GUT group is a SUSY extension of the Standard Model of

Particle Physics

• Unify SU(3)⇥ SU(2)⇥ U(1) into SO(10)

• we have 3 generations of

16M = (q, uc, ec, dc, l, ⌫R)

• contains the Right handed neutrino ⌫R useful for Seesaw mechanism

This is an improvement as compared to SU(5) where the right handed

neutrino were introduced as complex structure moduli.

Question: How can one see the splitting of moduli when going from

SO(10) to SU(5)?

• When answering this question one can also address :

The breaking pattern SO(10) ! SU(5)⇥ U(1) allows for an additional

neutral gauge boson Z , which could be almost as light as the SM gauge

bosons, e.g., at the TeV scale



• One needs Higgs particles for particle masses. What representations for

the Higgs field?

16⇥ 16 = 10 + 120 + 126 so Higgs can be in 10, 120, ¯126

• The simplest choice is when Higgses H are in 10 representation.

- Yukawa couplings are fij16i16j10H .

- This leads to similar equalities as in SU(5) case between the masses of

down quarks and charged leptons which:

mb = m⌧ but fails for the first 2 families ms = mµ,md = me.

- One way to solve this paradox is to consider the 126 HIggs field: 1616126H
which would introduce a see-saw mass for the RH neutrinos

- Problem in String Theory: how to include the 126 Higgs?

• hep-th/9604112 (March-Russell and Dienes) : free-field heterotic string

models can’t give a massless 126 representation of SO(10) for level 1.

One needs to go to higher levels to get an aswer in Heterotic strings.



• What about 126 in F-theory?

One can have:

• F-theory models dual to Heterotic String

• F-theory which are not dual to Heterotic string

For the first type, we use the Heterotic/F-theory duality to map vector

bundles from heterotic strings into F-theory

In Heterotic string, the representations of SU(5) are obtained from the

representation of the vector bundle which breaks E8 to the GUT group.

• For SU(5) GUT group, we need an SU(5) bundle and the correspon-

dence between the representations ⇢(V ) and and those of the unbroken

SU(5)GUT is:

• V $ 10 (V is the 5 of vector bundle SU(5))

• ^2V ⇤ $ 5 (^2V is the 10 of vector bundle SU(5))



• For SO(10), we need an SU(4) bundle and the correspondence between

the representations ⇢(V ) and and those of the unbroken SO(10)GUT is:

• V $ 16

^2V ⇤ $ 10

There is no correspondent for 126 so it is not clear what 126H would be

in the heterotic or F-theory picture for these models.

• Concentrate on the minimal SO(10) model with only the fij16i16j10H
coupling.

F-theory Picture

Compactify F-theory on an elliptic fibered Calabi-Yau 4-fold

⇡ : X ! B3.

We assume that X is given by Weierstrass equation:

y2 = x3 + x f + g



The gauge groups obtained on branes are An,Dn,En groups.

An groups are obtained with stacks of multiple D7 branes of the same

(p,q) type.

Dn groups are obtained with stacks of D7 branes and lifts of O7 planes.

En groups can only be obtained by overlaps of di↵erent (p,q) 7-branes.

• Local F-theory phenomenology approach (Beasley, Heckmann, Vafa;Donagi-
Weijnholt

Focus on e↵ective 4D N = 1 Super-Yang-Mills theory on divisor S

•Many aspects of gauge theory associated with the discriminant locus S,

only on the geometry of X around S.

• The matter multiplets only sees the geometry along the codimension-2

loci of B3

• The Yukawa couplings are obtained from codimension-3 loci of B3.



Let us considered the SU(5) model (A4 singularity) and go to the codi-

mension 3 singularities.

This is supposed to be related to an “E6 singularity” (at local level)

Unbroken SU(5) gauge symmetry - elliptic fibered manifold

y2 = x3 + a5yx + a4zx
2 + a3z

2y + (a2z
3 + f0z

4)x + (a0z
5 + g0z

6), ,

where (x, y) are coordinates for the elliptic fiber of the elliptic fibration

z is the coordinate normal to the discriminant locus S of the GUT gauge

group.

a0,2,3,4,5 are functions of local coordinates of S.

For SU(5) GUT models - The discriminant of this elliptic fibration is given
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z = 0 is the locus of SU(5) GUT gauge fields (codimension-1 singularity

in a base 3-fold)

Two matter curves (codimension-2 singularities):

a5 = 0: SU(5)-10 + 10 representations are localized

P (5) = a0a
2
5 � a2a5a3 + a4a

2
3 = 0: 5 + 5̄ representations are localized.

a5 = 0: singularity in (x, y, z)-surface is “enhanced” from A4 to “D5”

“D5” means that it could be the genuine D5 or something else

P (5) = 0 :singularity in (x, y, z)-surface is “enhanced” from A4 to “A5”

“A5” means that it could be the genuine A5 or something else



� / z7 when a5 = 0 (as in D5 singularity)

� / z6 for P (5) = 0 (as in A5 singularity).

There are isolated codimension-3 singularities along the matter curves.

On a5 curve:

– type (a): common zero of a5 and a4,

– type (d): common zero of a5 and a3.

On the P (5) = 0 curve they are at:

– type (c1): common zero of P (5) and R(5) but a5 6= 0 , with
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In the local picture, when zooming towards the gauge divisors, the de-

formations of genuine E6, D6 and A6 singularity, respectively, to A4

are good approximation of local geometry of each of the three types of

codimension-3 singularities above.



In this limit, field theory local model with E6, SO(12) and SU(7) gauge

groups can be used to analyze physics localized at these types of codim.-3

singularities.

Type (a) Singularity: ”E6” ! A4

The type (a) codimension-3 singularity is generated the Yukawa couplings

of the form

�W = 10

ab
10

cd
5

e✏abcde (3)

The most generic deformation of E6 singularity

Y 2 = X3 +X(✏2Z
2 + ✏5Z + ✏8) +

 
Z4

4
+ ✏6Z

2 + ✏9Z + ✏12

!
. (4)

When ✏2,5,8 and ✏6,9,12 are zero - E6 singularity.

✏2,5,8 and ✏6,9,12 are functions of local coord. um (m = 1, 2) on S.

To preserve SU(5) unbroken symmetry, the deformation is parametrized

by two complex numbers for a given point on S, a4 and a5.



By zooming and rescaling, we could see that the deformed E6 geometry

maps into the A4 singular geometry.

We can choose E6 as the gauge group of field theory local model for the

geometry around the type (a) codimension-3 singularity,

The deformation can be seen by studying the vev of the Higgs field in the

directions orthogonal to the D7 branes.

This works for diagonal Higgs field. Other consideration: non-diagonal

Higgs field which leads to T-branes.

Consider now going beyond the local version of the geometries. The

question would be is if we get from one type of Kodaira fibre to another

one if we go in higher codimension.

There are several way to do this:

a) using only blow-ups like in Sven Krause, Christoph Mayrhofer, Timo

Weigand (1109.3454) based on Grimm-Weigand 1006.0226



b) using blow-ups plus small resolutiong with consideration of several

patches Esole-Yau 1107.0733

c) using blow-ups and small resolutions with single patch Marsano and

Schafer-Nameki 1108.1794

In this talk: b) + c)

Question: does the field theory enhancing of singularity survive in the

global model?

Instead of working with a singular CY 4-fold, they resolved the singularities

along the gauge divisors and then took to 0 various parameters appearing

in the geometry.

To resolve the singularities they used two P 2 blow-ups and 2 small reso-

lutions.

The first two P 2 blow-ups give rise to a smooth geometry in case a3, a4, a5
are all di↵erent from zero



In the case some of the ai coe�cents or the corresponding combinations

are 0 (as before), the geometry becomes an a�ne binomial variety

x y = u v t

where y and t depend on the coe�cients ai.

This is similar to the well-known conifold singularity xy = uv which is

resolved with one P 1 cycle.

In the case of the binomial variety, one needs two P 1 cycles.

The conclusion of 1107.0733: E6 Kodaira fiber is not recovered.

Nevertheless, this is not unexpected as it was not neccesary to get E6

Actually there are two ways of making the blow-ups:

1) blow up 4 times (with 2 P 2 and small resolutions) and then take the

limits when some of the ai coe�cents or the corresponding combinations

are 0.



2) blow up the two P 2 cycles, then take the limits when some of the ai
coe�cients or the corresponding combinations are 0 and then perform the

small resolutions

For A4 singularity, going the route 1) or 2) reaches the same result.

Going the route 1), one starts with four 2-cycles: C1±, C2± when a3, a4, a5
are all di↵erent from zero and obtain C3±, C4± when some ai are zero.

The relation between C1±, C2± and C3±, C4± show us how the cycles

are redistributed.

Going the route 2), one needs to keep trak of cycles who shrink and then

perform new resolutions and study the intersections between the old and

new cycles.

For D5, going the route 1) is clear, going the route 2) is less clear. For

higher groups, going the route 2) becomes harder.

The problem: higher Dynkin diagrams?



Possible explanation: a3, a4, a5 are all complex deformations of the geom-

etry. Deforming singularities by taking combinations of a3, a4, a5 to zero

and then resolving might not be the same as doing the other way around.

Similar situation in the resolutions of N = 2 singularities and then N =

2 ! N = 1 by a superpotential for the adjoint fields.

W = aij�
j
i

Even when considering the case 1) for the blow-up, the disadvantage of

Esole-Yau method is that one needs to consider 3 patches at every step

of the resolution.

This can become cumbersome for higher singularities when trying to iden-

tify the recombination of cycles or their intersection (SO(10), E6)

Marsano and Schafer-Nameki (1108.1794): consider a global picture where

one looks at a single patch for every step of the resolution.

Look at the vanishing of various section inside some CY 4-fold.



The method clearer to follow.

The success of this method consisted in showing that one does not need

to think of enhacing the singularity but one should look at the weights of

representations.

This is why one needs to use ”E6” or ”E7”.

• Consider the roots of the a�ne A4: ↵i, i = 1, · · · , 5

• Codimension 2 singularity - over the 10 matter locus a5 = 0

�↵2 ! (µ10 + ↵1 + ↵2 + ↵3) + (µ10 � ↵1 � 2↵2 � ↵3)

�↵4 ! (µ10 + ↵1 + ↵2 + ↵3) + (µ10 � ↵2 � ↵3 � ↵4) + (�↵1)

To each ↵i one associates a divisor D�↵i related to vanishing of some

section in the global geometry.

Their intersection gives rise to the extended SU(5) Dynkin diagram

After the splitting, one gets representations of SU(5).



How to apply to SO(10) - D5 singularity?

We expect 16 from “E6” enhancement, 10 from “D6” enhancement and

16 16 10 from “E7” enhacement (again, these are field theory indications)

We construct the resolution in the auxiliary 5-fold X5 - P
2 bundle

� is inherited from the hyperplane of the P 2 fiber.

The Tate form for an SO(10) singularity at z = 0 is

y2w + b1zxyw + b3z
2yw2 = x3 + b2zx

2w + b4z
3xw2 + b6z

5w3 . (5)

The resolution of the singularity is obtain with with three blowups and

two small resolutions:

x = ⇣x1 , y = ⇣y1 , z = ⇣z1

where ⇣ = 0 gives rise to an exceptional divisor E1.



x1 = x2↵ , y1 = y2↵ , ⇣ = ⇣2↵ .

The section ↵ = 0 gives rise to an exceptional divisor E2.

Third blow up along y2 = ⇣2 = ↵ = 0, which we do by setting

y2 = y3� , ⇣2 = ⇣3� , ↵ = ↵3� .

The section � = 0 gives rise to a new exceptional divisor E3.

The fourth blow up is along y3 = ⇣3 = 0 and we do this by setting

y3 = y4�4, ⇣3 = ⇣4�4

The fifth blow up is along y4 = ↵3 = 0 and is y4 = y5�5,↵3 = ↵5�5

The sections �4 = 0 and �5 = 0 give rise to new divisors E4 and E5 .

The section z = 0, where the D5 singularity is located, splits as

z = z1⇣4↵5�
2�4�5 = 0



The Cartan divisors are these six factors restricted to the resolved 4-fold

Ỹ4, and are given by

Cartan Divisor Component Class in Y4
D�↵0 (z1 = 0)|Y4 S2 � E1

D�↵1 (�4 = 0)|Y4,⇣4 6=0 �E1 + E2 + E3 + 2E4

D�↵2 (⇣4 = 0)|Y4 E1 � E2 � E3 � E4

D�↵3 (� = 0)|Y4 E3

D�↵4 (�5 = 0)|Y4 E5

D�↵5 (↵5 = 0)|Y4 (E2 � E3 � E5)

(6)

whose intersection of the Cartan divisors is exactly the Cartan matrix of

the extended SO(10).

Therefore the codimension 1 discussion involving gauge fields is correct.

Now move to matter and Yukawas couplings.

The discriminant of the SO(10) singularity has an expansion



� = �16z7b32b
2
3r +

⇣
�27b43 � 8b21b

2
2b
2
3 + 72b2b4b

2
3 + 4b1b2

(9b23 + 4b2b4b3 + 16b22

⇣
b24 � 4b2b6))z

8 +O(z9) .

In summary, we would expect the following enhancements:
00D00

6 : b3 = 0,00E6 :
00 b2 = 0

00E7 :
00 b2 = b3 = 0,00D7 :

00 b3 = b24 � 4b2b6 = 0

• We expect to get matter in the 16 of SO(10) along z = b2 = 0.

Look at one specific component of z = 0, namely � = 0.

� = b2 = 0 ! y5�4(y5�5 + b3⇣4) = 0

so it reduces to three components

[�] · [b2] = [�] · [y5] + [�] · ([�4]� [⇣4]) + [�] · ([b2]� [y5]� [�4] + [⇣4])



Second component is [�]·([�4]�[⇣4]) since the first Cartan divisor restricted

to b2 gives � = 0.

z = 0 splits into 7 components along b2 = 0

The splitting of the weight associated to the third root is

�↵3 = (0, 1,�2, 1, 1) ! (�2, 1, 0, 0, 0)+(1, 0,�1, 1, 0)+(1, 0,�1, 0, 1)

(1,0,-1,1,0) corresponds to �(µ
16

� ↵1 � ↵2 � ↵3 � ↵4 � ↵5)

(1,0,-1,0,1) corresponds to µ
16

� ↵2 � 2↵3 � ↵4 � ↵5,

Result: instead of having the E6 enhacement, we obtain a splitting in-

volving weights of the representation 16 for SO(10).

• Matter in the 10 representation

We expect to get matter in the 10 along z = b3 = 0.



Look at another specific component of z = 0, namely �5 = 0 which splits

into 7 components, as one would expect from a ”D6” enhancement.

The �5 = 0 root splits as

(0, 0, 1,�2, 0) ! (0, 0, 1, 0,�2) + (0, 0, 0,�1, 1) + (0, 0, 0,�1, 1)

The first component is a Cartan divisor, but the other two are both given

by µ
10

� ↵1 � ↵2 � ↵3 � ↵4

Result: instead of E6 enhacement, split involving weights of the represen-

tation 10 for SO(10).

• Yukawa Couplings

Yukawa interaction - ”E7” enhancement which is given by b2 = b3 = 0.

This corresponds to the Yukawa coupling 16 ⇥ 16 ⇥ 10 as can be seen

from the splitting of the divisors involving both µ10 and µ16



The ”E7” enhancement has only 7 components instead of the expected

8, this is similar to what was shown to happen with E6 in Esole-Yau

• D7 enhancement

We expect to get a ”D7” enhancement at b3 = b24 � 4b2b6 = 0.

One sees see that the two previously separate 10 matter curves become

one, we believe that this corresponds to a 10⇥ 10⇥ 1 coupling, we do

not see a curve for the singlet as it is not part of the GUT divisor.

Now we turn to discuss the G-flux



G-Flux

Remember: the existence of the (2,2) form G-flux is a requirement of the

heterotic - F theory duality.

Local geometries - G-flux can be constructed from Heterotic string data

in terms of spectral covers.

Global geometries -we use the approach Marsano, Schafer-Nameki et al.

The global approach was successfully applied to the case ofA4 singularities

We follow the same path for the SO(10) group.

Our original 4-fold Y4 is given by

y2w + b1zxyw + b3z
2yw2 = x3 + b2zx

2w + b4z
3xw2 + b6z

5w3

Tate divisor: wz(b2x
2 + b4z

2xw + b6z
4w2 � b1xy � b3zyw)

it can be rewritten in terms of the t = y/x as z(b2t
4 + b4z

2t2 + b6z
4 �



b1t
5 � b3zt

3

s = z/t and holding s fixed in the limit t ! 0, z ! 0:

st5
⇣
b2 + b4s

2 + b6s
4 � b3s

⌘

For the resolved Calabi-Yau Ỹ4, the total transform of the Tate divisor

wy2 � x3 = 0 is

⇣24↵
4
5�

8�34�
6
5

⇣
wy25�4 � x32⇣4↵

2
5�
⌘
= 0 (7)

wy25�4 � x32⇣4↵
2
5� = 0 is the proper transform of the Tate divisor, which

we then restrict to the resolved Ỹ4.

The proper transform of the Tate divisor is reducible, with components

given by ⇣4 = 0, z1 = 0, and the remainder.

To see this, set ⇣4 = 0.

We cannot have w = 0, y5 = 0, ↵5 = 0 or �5 = 0, so we set these equal

1.



The Tate divisor equation is now �4 = 0 and the equation for the resolved

Ỹ4 also becomes �4 = 0 so Tate divisor equation is automatically satisfied.

Its intersection with the Cartan divisors takes the form:

CTate ·Ỹ4 ⌃↵i = (0, 0, 0, 1, 0)⇥ 4 . (8)

Local limit: only �5 ! 0 is allowed , giving the required spectral equation

b6y
4
5 + b4y

2
5 � b3y5 + b2 = 0

The local limit yield the the Higgs bundle description - consistency check.

Quantisation condition :

G + 1
2c2(Ỹ4) takes values in H4(Ỹ4, Z)

The condition holds for SU(5) or E6

Extra constraints on the base B3 are needed for the SO(10) case. Why?

This was pointed out in Kuntzler, Schafer-Nameki (1205.5688)



Conclusions

• SO(10) GUT needs more study

• Understanding better resolution the singularities for Calaby Yau 4-fold

• Try to introduce Higgs in 126 representation

• Understand the additional contraints impose on the base B3


