

Data Management within the D-Grid HEP Community Project

Michael Ernst DESY

HEPCG Workshop April 2006

D-Grid WS M.Ernst

Credits

- DESY Hamburg:
- FZK:
- NIC / DESY Zeuthen: D. Melkumyan, P. Wegner, D. Pleiter

D. Ressmann

- Uni Dortmund:
- Uni Freiburg:
- ZIB Berlin:

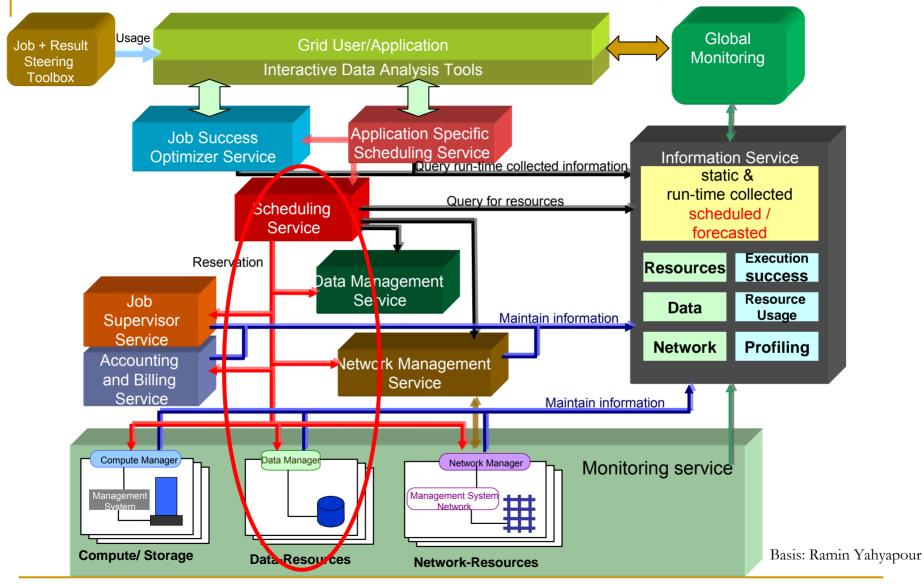
R. Yahyapour, L. Schley, S. Freitag

M. E., P. Fuhrmann, M. Radicke

- C. Wissing
- K. Desch, P. Wienemann,
- T. Potjans
- H. Stueben, S. Wollny

Work Package 1: Data Management

1. Development and Distribution of a *Scalable Storage Element* for the specific requirements of the High Energy Physics Community based on Standard Grid Interfaces


(DESY, Unis Dortmund und Freiburg, FZK)

- 2. Optimization of Job Scheduling in Data Intensive Applications (Uni-Dortmund (CEI und Physik), DESY – Synergy with C3 Grid)
- 3. Development of an Extensible Metadata Catalog for Semantic Data Access

(DESY, ZIB, HUB, NIC – Interest shown by AstroGrid)

Architecture and Services of the HEP Community Grid

Optimized Job Scheduling – Project Goals

Current situation:

- Allocation of jobs vs. sites incorporates little information about data availability
 - E.g., files may be on tertiary storage → staging needed before access (time consuming)
- Storage element does not provide advanced planning features
- More precise planning and prediction of file availability prior to job allocation to compute elements
- Better integration of local job and data scheduling to improve response times and throughput

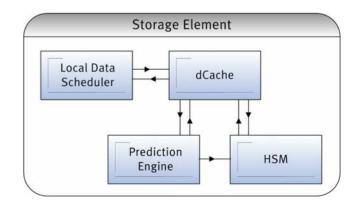
Requirements

- Co-scheduling of jobs and data
- Job types that can be distinguished
 - CPU intensive algorithms use small input data sets to produce large sets of simulation data:
 - Due to the high computational resource consumption the resulting data sets are valuable
 - Resulting data sets have to be distributed \rightarrow coherence?
 - *Reconstruction / Reprocessing:*
 - Access to the simulation data is needed
 - Use of CPU intensive algorithms
 - Analyze jobs:
 - Quantity and local occurrence are not predictable
 - Use of data sets from experiments and/or simulations
 - Variable in CPU utilization and resulting data sets

Development

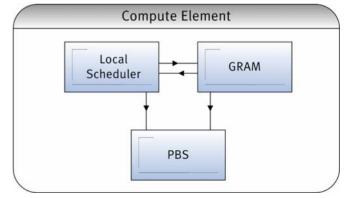
Work will be based on Components used in LCG

- □ Initially, LCG 2.X software
- As soon as sensible, switch to web service based gLite (target middleware)
- Extensions to existing dCache system
- Desirable: cooperation, discussion and maybe integration of our (future) research and corresponding results into LCG


Extended Scheduling System

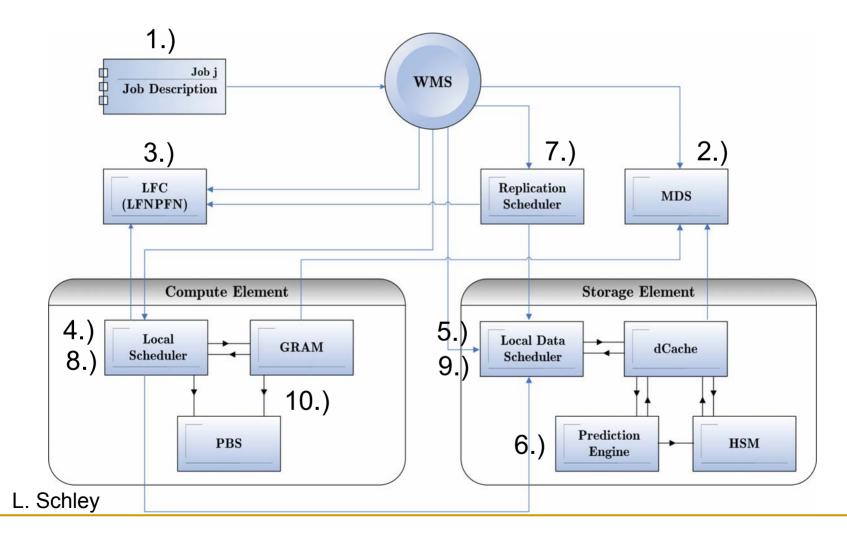
- System makes use of the local schedulers in the extended CEs and SEs
 - Add SE interface to communicate about future data/storage requests
 - Add CE interface to communicate about future job executions
- If replication has to be accomplished a corresponding replication scheduler will be invoked.
- Desirable: Possible addition to current WMS development

Extension of SE


- Due to the use of HSM, files appear "available" on a local file system → essentially located on tertiary storage
 - □ Restaging on demand can take a long period of time
 →ready to run jobs have to stay idle until the recovery of prerequisite data
 - Restaging time is difficult to predict
- Ext. of the SE (dCache & HSM) by a prediction engine
 Estimation of restoration times: When will a file be accessible?
- Ext. of the SE by a local data scheduler (LDS) to a schedulable resource
 - LDS has to deal with space reservation (dCache support)
 - LDS communicates with dCache: When is a file accessible?
 - dCache and LDS need agreement mechanisms

Extension of CE

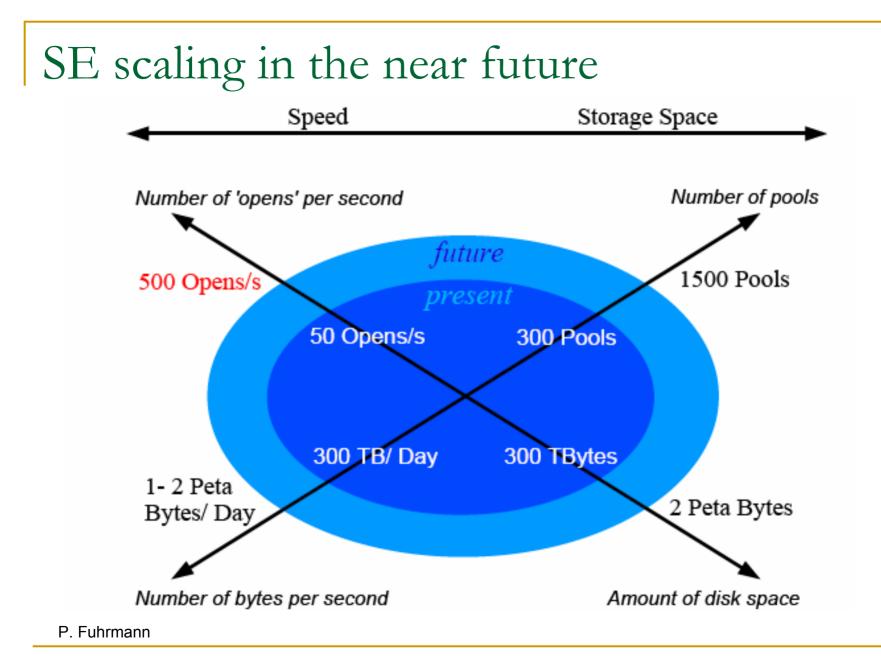
- Extension of the CE by a local scheduler to a schedulable resource
- Functions of the local scheduler:
 - Query of the dynamic state: When can the CE execute the next job?
 - Agreement mechanism for the execution of jobs
 - Interaction with SE: Is the required data finally available on the SE?
- Architecture is based on the current CE
- Torque controlled by GRAM



Central Scheduling System

- Receives jobs from the user (JDL)
- Interacts with the Monitoring and Discovery Service (MDS) to find resources
 - dependent on the submitted JDL
- Interacts with a File Catalog (LFC) to translate LFNs, PFNs, and GUIDs
 - Where are the files located?
- System makes use of the local schedulers in the extended CEs and SEs
 - Which is the earliest start time for a job?
 - Has file replication to take place?
 - □ Are the files during execution time immediately accessible?
- If replication has to be accomplished a replication scheduler will be invoked

Planned Architecture


Issues related to SE scaling

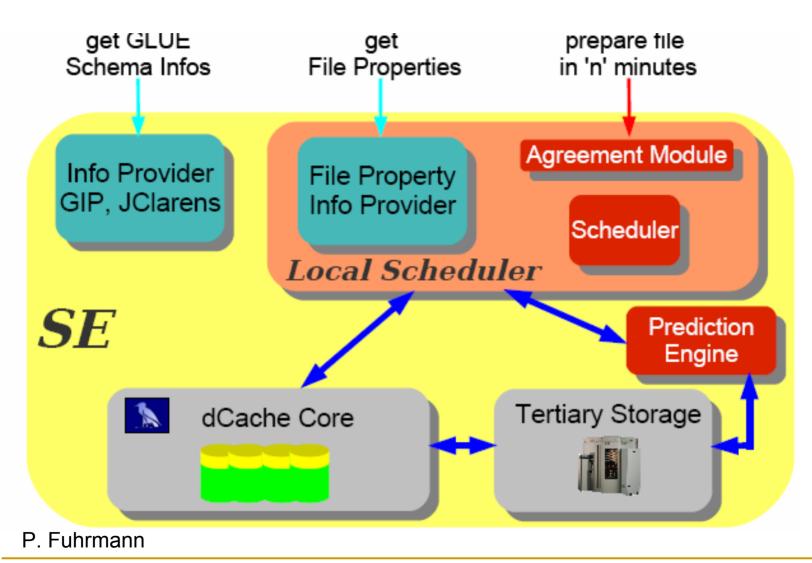
- file-system access frequency
- Tertiary Storage optimization
- SE partitioning
- Addressing hardware issues

Installation
Maintanance

Storage Element Size

Co-scheduling of jobs and data

- More precise information provided by SE's will help the Resource Broker to improve matchmaking
 - RB is querying SE for specific file metadata using File Property Information Provider



Improvements: Information Service

- Information Provider (SE-specific)
 - dCache gets grid-enabled by publishing its status according to the GLUE schema
 - already deployed in LCG and OSG installations
- File Property Infoprovider (file-specific)
 - Extended Information Service, WS-based
 - □ File is cached/ on tape
 - time to get file ready for transfer
- \rightarrow important prerequisite for co-scheduling

Extended SE overview

ILDG Initiative

- The International Lattice DataGrid was proposed 2001.
- Aim:
 - Longterm storage and global sharing of gauge configurations within a Datagrid
 - Make more efficient use of expensive data
- Participants: Australia, France, Germany, Italy, Japan, UK, USA
- Working groups:
 - Metadata working group
 - Middleware working group
- http://www.lqcd.org/ildg

Requirements

Sharing gauge configurations requires

- Semantic access to worldwide distributed data
- Standardised metadata
- XML documents which conform to a XML schema

Extensible schema required

- Standards on binary file format
- Definition of common middleware interfaces
- ILDG is planned to be a grid-of-grids

Requirements

- Load/store/query of XML documents which conform to **extensible schema**
- Access via web service front-end
- Standard relational database as back-end
- Usable for other research communities

XML Java objects relational tables

Issues to be addressed:

- XML-Java binding
- Java object content persistence

- Web services to query and download documents standardized by ILDG (Additional services for LatFor DataGrid)
- Read access: open
- Write access: GSI based authentication
- Used software:
 - Tomcat5 + Axis
 - gLite trustmanager

Evaluation

- Chosen solution meets requirements
 - Support for extensible schema
 - But: XML schema specification not yet fully supported
- Usable for other research communities
- Flexible front-end
- SQL servers provide standard, well-supported backend technology
- Fast queries for simple elements
- Performance issues: materialization of XML IDs expensive:
 - Loading requires O(0.02) seconds per XML ID
 - Storing requires O(0.04) seconds per XML ID

Authorization / Access Control

MDC stores for each ensemble permissions for

- modifying metadata
- modifying data files (configurations)
- downloading data files
- Read or write permissions are assigned to groups
- Project (=owner) administrators can
 - create and modify groups
 - modify access permissions
- ACL will be forwarded to file catalogue
 - Use ACL feature of LFC

LatFor Datagrid

Regional grid for groups in Italy, France, Germany

- Resource requirements:
- O(100.000) configurations, O(10-100) TBytes

Infrastructure:

- Information services
 - Metadata catalogue (DESY Z)
 - VOMS server (VO "ildg") (DESY HH)
 - BDII, LFC file catalogue (DESY HH)
- Storage elements
 - Using dCache for SEs
 - SE at DESY (HH/Z), ZIB (Berlin), ZAM (Jülich)
 - Includes all sites with HPC for LQCD

User Client Software

LCG-2 based Grid User Interface

- Compiled for several Linux flavours
- Globus-2.4, LCG client data management tools
- Other client software Java/Perl based
- RPM-based installation mechanism for all client software
 - Installation in user space
 - No root rights required
 - Same installation mechanism for different Linux flavours
- GUI installations in: Germany, UK, France, Japan, Spain, Italy, Cyprus

Summary (1/2)

- WP1/ Data Management within HEP Community Project on track
 - Milestones reached so far
 - Some areas ahead of plan
 - dCache Scalable Storage Element as it currently exists is already used world-wide and an important component in LHC Computing
 - Have met the INFN/EGEE Workload Management System Developers to investigate collaboration potential and find a non-intrusive way to integrate the extended scheduling mechanism

Summary (2/2)

- WP1/ Data Management within HEP Community Project on track
 - Goals as outlined in project plan will according to current understanding - be met
 - No changes to project plan
 - Concepts and Strategies worked out and are well aligned with expectations expressed by community
 - Components developed are expected to be used as part of the DGI infrastructure and the international LHC computing environment

