

Track-based alignment and calibration with Millepede-II and General Broken Lines

C. Kleinwort

DESY/KEK meeting 20.03.12

* Millepede

- Introduction
- Examples
 - + Calibration of H1 Central Jet Chambers
 - + Alignment of CMS Silicon Tracker
- * General Broken Lines

* GENFIT

* Summary

MP - Introduction

- * Millepede is a software package for linear least squares fits with a large number of parameters
- * Developed and implemented in FORTAN77 by Volker Blobel (Univ. Hamburg), started 1996
- * Used by several experiments for track based alignment and calibration
- * Now maintained by Statistics Tools group of Analysis Center in Helmholtz Terascale Alliance

V. Blobel: Track based alignment, Nuclear Instruments and Methods A, 566 (2006), pp. 5-13)

MP basics $\left(\chi^{2}(\Delta \mathbf{p}, \Delta \mathbf{q}) = \sum_{j}^{\text{tracks hits}} \frac{1}{\sigma_{ij}^{2}} \left(\mathbf{m}_{ij} - \mathbf{f}_{ij}(\mathbf{p}_{0}, \mathbf{q}_{j0}) - \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{p}} \Delta \mathbf{p} - \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{q}_{j}} \Delta \mathbf{q}_{j}\right)^{2}$

- * Track based alignment and calibration
 - Minimizing χ^2 sum
 - + for large number of global (align., calib.) parameters $\Delta {\bf p}$
 - + from large number of local fits (tracks Δq_j)
 - + with model **f** linearized at initial parameters (p_0,q_0)
 - Linear equation system with bordered band matrix
 - + Border populated due to global derivatives $\partial f / \partial p$
 - + Block diagonal by (independent) local derivatives $\partial f / \partial q_j$
 - Local fits $(\partial \chi^2 / \partial \Delta q_j = 0)$ done with $p = p_0$
 - + Size of lin. eqn. system reduced to number of global par.
 - + Correlations of global trough local parameters maintained

Millepede basics (II)

* Power of method (condition of matrix) improves with variety of inputs:

- Data sets with different phase space
 - + Tracks from collisions, cosmic rays, ..
- Detectors with different sensitivity, systematics, ..
 - + Common alignment and calibration
 - + E.g. for muons use complete track from first (pixel) to last (muon detector) hit
- Operational conditions
 - + E.g. scan of E, B field

MP-II implementation

* Split into two parts

- Mille
 - + Integrated into software of experiment (Fortran, C/C++)
 - Producing binary files containing the required information from the tracks (measurements, errors, derivatives)
- Pede
 - + Standalone Fortran90 program to solve the (large) linear equation system produced from the binary files
 - + Implemented in 64bit to access more than 8GB of memory
 - + Parallelized with $OpenMP^{TM}$

Calibration example (I)

- * Calibration of H1 Central Jet Chambers
 - Relation drift time to drift distance
 - + Depends in first order on drift velocity, Lorentz angle
 - + Higher order corrections (track angle, inhomogeneities)

CJC2

 \bigcirc

- Online calibration:
 - + Time dependence of mean drift velocity, Lorentz angle
- Offline calibration:
 - + Spatial variations: v_d , a_{lor} vs R, φ , B(Z,R)
 - + Dependence on E-field, air pressure (-> compensation)
 - + Isochrone, close wire corrections

7

Calibration example (II)

Calibration example (III)

***** HERA-I \blacktriangle to \bullet

- Variations of E(φ,R)
- ★ HERA-II to
 - Variations of B(Z,R)

* Resolution

 of track parameters (for high momenta) improved by factor 2

Alignment example (I)

* Alignment of CMS Silicon Tracker

 25k strip (pixel) sensors with 5 (6) rigid body alignment parameters

- Additional surface deformations
 - + Described by sum of Legendre polynomials
 - + For 2nd order (curved sensors) 3 more parameters
- In total 200k alignment parameters

Alignment example (II)

CMS 2011 Tracker Alignment: ~1 fb⁻¹

Input Data

- Loosely selected isolated muons: 15 million.
- Muon pairs from $Z \rightarrow \mu^+ \mu^-$ decays: 375 thousand pairs.
- Low momentum tracks: 3 million.
- Cosmic tracks (e.g. recorded in between LHC fills): 3.6 million.

From talk by Gero Flucke, ACAT2011

Gero Flucke (DESY)

The Alignment of the CMS Silicon Tracker

ACAT 2011 11 / 21

▲ 분 ▶ ▲ 분 ▶ . 분 | 単 · · · ○ Q @

Alignment example (II)

CMS 2011 Tracker Alignment

Alignment Algorithm and Parameters

- Millepede II algorithm with ~200 000 free alignment parameters.
- 8 (9) parameters per strip (pixel) sensor:
 - 5/6 rigid body like parameters (one insensitive for strips),
 - 3 bow parameters.
- Time dependent rigid body parameters for larger pixel structures:
 - 9 time periods in common fit,
 - \Rightarrow moving structures, modules constant within.
- $Z \rightarrow \mu^+ \mu^-$ combined object, adding Z mass "measurement" (\Rightarrow).

Gero Flucke (DESY)

The Alignment of the CMS Silicon Tracker

ACAT 2011 12 / 21

Alignment example (III)

CMS 2011 Tracker Alignment

Millepede II at Work

- 246 zipped binary files (\sum 46.5 GB), read 13 times.
- 22.6 million local fit objects,
 - bordered band matrix structure: max(border) = 9, max(width) = 4.
- MINRES iterating 3 times (tightening outlier rejection) to solve
 C' a^{global} = b'. (from hierarchy constraints)
- 200 614 fit parameters (including 138 Lagrange multipliers).
- Matrix with 31% non-zero off-diagonal entries, compression ratio 40%, ⇒ fits well into 32 GB memory.
- Total CPU 44.5 h, Wall 9:50 h using 8 threads on Intel® Xeon® L5520, 2.27 GHz.

 \Rightarrow Very efficient usage of resources with fast turnaround for analysis!

Gero Flucke (DESY)

CMS example (IV)

Remaining surface deformation $\Delta w \approx \Delta u/tan(\alpha)$ vs (normalized) u (TIB)

Typical sagitta values: 20-40 µm

General Broken Lines

* Track model for Millepede

- For detector with substantial material multiple scattering has to be described properly
- Fit must be implemented as single linear equation system delivering the complete covariance matrix
 Kalman filter can't be used
- Use trajectories based on broken lines

V. Blobel: Fast track-fit algorithm based on broken lines, Nuclear Instruments and Methods A, 566 (2006), pp. 14-17

GBL - Basics

* General Broken Lines constructed from

- Sequence of thin scatterers
- Offsets (u) as fit parameters at scattering planes
- Jacobians (du/dploc) for propagation between measurement and scattering planes
- Interpolation of offset pairs for measurements
- Kinks from offset triplets to describe multiple scat.
- * Track fit time linear in number of measurements
 - Linear equation system with (bordered) band matrix
 - + Fast solution by root-free Cholesky decomposition

GBL vs Kalman filter

* Comparison with Kalman filter

- Mathematically equivalent
 - + Same measurements, scattering, propagation as input
- Computationally different
 - + Add all measurements and scatterers in one step, not one at a time
 - + One large bordered band matrix, not many 5x5 matrices
 - Track fit (≅ filtering + smoothing) up to factor 2 faster than Kalman filtering (first toy detector studies)

GBL - Implementations

* <u>GeneralBrokenLines@svnsrv.desy.de</u>

- Provided by Statistics Tools group of Analysis
 Center in Helmholtz Terascale Alliance
- FORTRAN version available
- C++ version under construction
- Interface to Millepede-II ("Mille step") included

GENFIT

- * GENFIT is generic track fitting framework providing infrastructure needed by GBL
 - (virtual) measurement planes with hits
 - Propagation between planes
- * GENFIT is used by Belle-II
- * Idea: Implement GBL in GENFIT
 - work has started (S. Yaschenko)
 - needs mature C++ version of GBL

C. Höppner et al.: A novel generic framework for track fitting in complex detector systems, Nuclear Instruments and Methods A, 620 (2010), pp. 518-525

Summary

- * Based on H1 and CMS experience
 - \bullet Use MP \otimes GBL for tracker calibration and alignment
- * Important is a variety of track samples
 - Interactions, cosmics, different E, B fields, ..
 - To avoid weak modes (x² invariant distortions)
- * Technical implementation
 - GENFIT as interface, or
 - Custom coded GBL and Mille step (as CMS)